Fundamental Lemma and Hitchin Fibration

Gérard Laumon

CNRS and Université Paris-Sud

September 21, 2006

In order to:

- compute the Hasse-Weil zeta functions of Shimura varieties (for example A_g),
- prove endoscopic cases of the Langlands functoriality (for example the transfer from Sp(2n) to GL(2n)),

one first needs to stabilize the Arthur-Selberg trace formula.

This stabilization can only be done after having established some combinatorial identities between orbital integrals for *p*-adic reductive groups.

The series of these conjectural identities form the so-called "Fundamental Lemma".

- There are four variants of the Fundamental Lemma: ordinary, twisted, weighted and twisted weighted.
- Here we only consider the ordinary Fundamental Lemma.
- First occurrence of the Fundamental Lemma in Labesse-Langlands' paper (1979).
- General formulation of the Fundamental Lemma by Langlands-Shelstad (1987).

ORBITAL INTEGRALS FOR GL(n)

$$\mathcal{O}_{\gamma}^{\mathcal{G}} = \int_{\mathcal{G}_{\gamma}(\mathcal{F}) \setminus \mathcal{G}(\mathcal{F})} \mathbb{1}_{\mathcal{K}}(g^{-1}\gamma g) \frac{\mathrm{d}g}{\mathrm{d}g_{\gamma}}$$

F non archimedan local field: for example $F = \mathbb{Q}_p$ or $\mathbb{F}_p((\varpi))$ \mathcal{O}_F the ring of integers of $F: \mathcal{O}_{\mathbb{Q}_p} = \mathbb{Z}_p$ and $\mathcal{O}_{\mathbb{F}_p((\varpi))} = \mathbb{F}_p[[\varpi]]$

 $G = \operatorname{GL}(n), \ G(F) \ p$ -adic or ϖ -adic Lie group $K = G(\mathcal{O}_F) \subset G(F)$ maximal compact open subgroup

 $\mathfrak{g} = \mathrm{gl}(n, F)$ the Lie algebra of G(F) $\mathcal{K} = \mathrm{Lie}(\mathcal{K}) = \mathrm{gl}(n, \mathcal{O}_F)$: an \mathcal{O}_F -lattice in the F-vector space \mathfrak{g} $1_{\mathcal{K}} : \mathfrak{g} \to \{0, 1\}$ the characteristic function of \mathcal{K}

 $\gamma \in \mathfrak{g}$ regular semisimple \Rightarrow its centralizer G_{γ} is a maximal torus in Gdg and dg_{γ} Haar measures on G(F) and $G_{\gamma}(F)$

ORBITAL INTEGRALS FOR GL(n) AS NUMBERS OF LATTICES

Lemma

$$\mathcal{O}_{\gamma}^{\mathcal{G}} = |X_{\gamma}/\Lambda_{\gamma}|.$$

Here:

- $X_{\gamma} = \{ \mathcal{O}_F \text{-lattices } M \subset F^n \mid \gamma(M) \subset M \},$
- γ ∈ g regular semisimple ⇔ F[γ] ⊂ g commutative semisimple F-algebra of dimension n ⇒ F[γ] = ∏_{i∈I} E_i where (E_i)_{i∈I} is a finite family of finite separable extensions of F,
- choices of uniformizers ϖ_{E_i} 's in the E_i 's $\Rightarrow F[\gamma]^{\times} \cong \Lambda_{\gamma} \times K_{\gamma}$ where $\Lambda_{\gamma} = \mathbb{Z}^I$ and $K_{\gamma} = \prod_{i \in I} \mathcal{O}_{E_i}^{\times}$ maximal compact open subgroup of $G_{\gamma}(F) = F[\gamma]^{\times}$,
- $\Lambda_\gamma \subset G_\gamma(F)$ acts freely on X_γ ,

•
$$\operatorname{vol}(K, \mathrm{d}g) = \operatorname{vol}(K_{\gamma}, \mathrm{d}g_{\gamma}) = 1.$$

UNITARY GROUPS

- [F': F] = 2 unramified, $Gal(F'/F) = \{1, \tau\}.$
- $\Phi_n : F'^n \times F'^n \to F', \ (x, y) \mapsto x_1^{\tau} y_n + x_2^{\tau} y_{n-1} + \dots + x_n^{\tau} y_1,$ standard hermitian form $\Rightarrow G(F) = U(n, F) \subset GL(n, F')$ unitary group.
- (E_i)_{i∈I} finite family of finite separable extensions of F such that E_i is disjoint of F'
 ⇒ E'_i = E_iF', Gal(E'_i/E_i) ≅ Gal(F'/F) = {1, τ}.
- $c = (c_i)_{i \in I}$, $c_i \in E_i \Rightarrow (E'_I, \Phi_{I,c}) = \bigoplus_{i \in I} (E'_i, \Phi_{i,c_i})$ hermitian space where: $\Phi_{i,c_i} : E'_i \times E'_i \to F', (x, y) \mapsto \operatorname{Tr}_{E'_i/F'}(c_i x^{\tau} y).$

•
$$\operatorname{discr}(\Phi_{i,c_i}), \operatorname{discr}(\Phi_{I,c}) \in F^{\times}/\operatorname{N}_{F'/F}F'^{\times} \cong \mathbb{Z}/2\mathbb{Z},$$

$$\operatorname{discr}(\Phi_{I,c}) = \sum_{i \in I} \operatorname{discr}(\Phi_{i,c_i}).$$

ORBITAL INTEGRALS FOR UNITARY GROUPS

- Assume $\operatorname{discr}(\Phi_{I,c}) = 0 \Rightarrow (E'_I, \Phi_{I,c}) \cong (F'^n, \Phi_n).$
- Choosing such an isomorphism $\Rightarrow \iota_c : \bigoplus_{i \in I} \{ x \in E'_i \mid x^{\tau} + x = 0 \} \subset \operatorname{End}_{F'}(E'_I, \Phi_{I,c}) \cong \mathfrak{g}.$

•
$$\gamma = (\gamma_i)_{i \in I} \in E'_I$$
 such that:
- $\gamma_i^{\tau} + \gamma_i = 0$,
- $E'_i = F'[\gamma_i] \cong F'[x]/(P_i)$, P_i the minimal polynomial of γ_i ,
- $(P_i, P_j) = 1$, $\forall i \neq j$,

 \Rightarrow regular semisimple $\gamma_c = \iota_c(\gamma) \in \mathfrak{g}$.

Lemma

 $O_{\gamma_c}^{\mathcal{G}}$ = the number of $\mathcal{O}_{F'}$ -lattices $M \subset E'_l$ such that:

- $M^{\perp_c} := \{x \in E'_I \mid \Phi_{I,c}(x,M) \subset \mathcal{O}_{F'}\} = M$,
- $\gamma M \subset M$.

STABLE CONJUGACY

- The G(F)-conjugacy class of γ_c in g does not depend on the choice of the isomorphism (E'_I, Φ_{I,c}) ≅ (F'ⁿ, Φ_n).
- The γ_c 's are stably conjugated: they are conjugated in GL(n, F') but not necessarily in G(F).
- The G(F)-conjugacy class of γ_c only depends on

$$\mu(\boldsymbol{c}) = (\operatorname{discr}(\Phi_{i,c_i}))_{i \in I} \in (\mathbb{Z}/2\mathbb{Z})^I.$$

• As discr
$$(\Phi_{I,c}) = 0$$
, $\mu(c)$ lives in $\Lambda^0_{\gamma}/2\Lambda^0_{\gamma}$ where $\Lambda^0_{\gamma} = \operatorname{Ker}(+ : \mathbb{Z}^I \to \mathbb{Z}).$

In other words γ defines a stable conjugacy class in g and inside this stable conjugacy class there are finitely many G(F)-conjugacy classes, which are parametrized by $\Lambda_{\gamma}^{0}/2\Lambda_{\gamma}^{0}$.

$\kappa\text{-}\mathsf{ORBITAL}$ INTEGRALS FOR UNITARY GROUPS

- For each μ ∈ Λ⁰_γ/2Λ⁰_γ let us choose c_μ with μ(c_μ) = μ. The γ_{c_μ}'s form a system of representatives of the G(F)-conjugacy classes in the stable conjugacy class defined by γ.
- For any $\kappa : \Lambda_{\gamma}^{0}/2\Lambda_{\gamma}^{0} \to \{\pm 1\}$ we then have the κ -orbital integral:

$$\mathcal{O}_{\gamma}^{\boldsymbol{G},\kappa} = \sum_{\boldsymbol{\mu} \in \boldsymbol{\Lambda}_{\gamma}^{\boldsymbol{0}}/2\boldsymbol{\Lambda}_{\gamma}^{\boldsymbol{0}}} \kappa(\boldsymbol{\mu}) \mathcal{O}_{\gamma_{\boldsymbol{c}_{\boldsymbol{\mu}}}}^{\boldsymbol{G}}$$

 For κ = 1, the κ-orbital integral is also called the stable orbital integral:

 $\mathrm{SO}_{\gamma}^{\mathcal{G}} := \mathrm{O}_{\gamma}^{\mathcal{G},1}.$

LANGLANDS-SHELSTAD FUNDAMENTAL LEMMA FOR UNITARY GROUPS

Conjecture (Langlands-Shelstad)

 $\mathcal{O}_{\gamma}^{\mathcal{G},\kappa} = (-q)^{r} \mathcal{S} \mathcal{O}_{\gamma}^{\mathcal{H}}.$

Here:

•
$$G = U(n)$$
, $\gamma = \gamma_I = (\gamma_i)_{i \in I} \in \bigoplus_{i \in I} \{x \in E'_i \mid x^{\tau} + x = 0\}$,

• $\kappa : \Lambda_{\gamma}^{0}/2\Lambda_{\gamma}^{0} \to \{\pm 1\} \Leftrightarrow I = I_{1} \amalg I_{2}$ \Rightarrow endoscopic group $H = \mathrm{U}(n_{1}) \times \mathrm{U}(n_{2})$ with $n_{\alpha} = |I_{\alpha}|$,

•
$$\operatorname{SO}_{\gamma}^{H} := \operatorname{SO}_{\gamma_{l_1}}^{\operatorname{U}(n_1)} \times \operatorname{SO}_{\gamma_{l_2}}^{\operatorname{U}(n_2)}$$

- q the number of elements of the residue field of F,
- r the valuation of the resultant of Π_{i∈l1} P_i and Π_{i∈l2} P_i
 (P_i the minimal polynomial of γ_i over F').

The computation of the transfer factor is due to Waldspurger.

RESULTS (CLASSICAL METHODS)

- Labesse-Langlands (1979): U(2).
- Kottwitz (1992) and Rogawski (1990): U(3).
- Waldspurger (2005): The equal characteristic case (F ⊃ 𝔽_p((∞))) ⇒ the unequal characteristic case (F ⊃ ℚ_p).

RESULTS (GEOMETRIC METHODS)

 $F = \mathbb{F}_q((\varpi))$, \mathbb{F}_q finite field of characteristic p.

Theorem (Goresky-Kottwitz-MacPherson)

The Langlands-Sheldstad Fundamental Lemma for unitary groups holds if the following conditions are satisfied

- *p* ≫ 0,
- $E_i = E$ does not depend on $i \in I$ and is unramified over F,
- $v_F(\alpha(\gamma)) = v_F(\beta(\gamma))$ for every pair of roots (α, β) .

This is the unramified equal valuation case.

Theorem (Ngô-L.)

The Langlands-Sheldstad Fundamental Lemma for unitary groups holds if p > n.

Grothendieck-Lefschetz fixed point formula

The key of the geometric approaches is:

Theorem (Grothendieck-Lefschetz fixed point formula)

$$\mathrm{O}^{\mathcal{G},\kappa}_{\gamma} = \sum_{i} (-1)^{i} \mathrm{Tr}(\mathrm{Frob}^{*}_{q}, H^{i}(X^{0}_{\gamma}/\Lambda^{0}_{\gamma}, \mathcal{L}_{\kappa})).$$

Here:

- X_{γ}^{0} is an algebraic variety over $\overline{\mathbb{F}}_{q}$, a connected component of the affine Springer fiber X_{γ} ,
- Λ^0_{γ} is a lattice acting freely on X^0_{γ} ,
- \mathcal{L}_{κ} is the rank 1 ℓ -adic local system on $X^0_{\gamma}/\Lambda^0_{\gamma}$ defined by the covering $X^0_{\gamma} \to X^0_{\gamma}/\Lambda^0_{\gamma}$ and the character κ of its Galois group Λ^0_{γ} ($\ell \neq \operatorname{Char}(\mathbb{F}_q)$),
- Frob_q is a suitable Frobenius endomorphism.

Natural expectation: The Fundamental Lemma is the consequence of a (stronger) cohomological statement.

AFFINE SPRINGER FIBERS FOR GL(n)

- k algebraically closed, n > 0
 - ⇒ the affine Grassmannian: $X = \{k[[\varpi]] \text{-lattices } M \subset k((\varpi))^n\}$, an ind-scheme over k whose connected components are: $X^d = \{M \in X \mid [M : k[[\varpi]]^n] = d\}, \ d \in \mathbb{Z}.$
- $\gamma \in \mathrm{gl}(n, k((\varpi)))$ regular semisimple \Rightarrow the affine Springer fiber: $X_{\gamma} = \{M \in X \mid \gamma(M) \subset M\}$, a closed ind-subscheme of X.
- $\begin{aligned} k((\varpi))[\gamma] &= \prod_{i \in I} E_i, \text{ choosing uniformizers } \varpi_{E_i}\text{'s of } E_i\text{'s} \\ &\Rightarrow \text{ free action of } \Lambda_{\gamma} = \mathbb{Z}^I \text{ on } X_{\gamma} \text{ by } \lambda \cdot M = (\varpi_{E_i}^{-\lambda_i})_{i \in I}(M), \\ \Lambda^0_{\gamma} &= \operatorname{Ker}(+: \mathbb{Z}^I \to \mathbb{Z}) \text{ stabilizes } X^0_{\gamma}. \end{aligned}$

Theorem (Kazhdan-Lusztig)

 X_γ scheme locally of finite type over k and of finite dimension, whose connected components are the X^d_γ := X_γ ∩ X^d's,

•
$$X_{\gamma}/\Lambda_{\gamma} = X_{\gamma}^0/\Lambda_{\gamma}^0$$
 is a projective scheme.

FROBENIUS ENDOMORPHISM

 $k = \overline{\mathbb{F}}_q$

Twisted Frobenius on $\operatorname{GL}(n, k((\varpi)))$ with respect to \mathbb{F}_q :

$$\operatorname{Frob}_q(g) = \Phi \cdot {}^{\operatorname{t}} (\sum_m g^q_{ij,m} \varpi^m)^{-1} \cdot \Phi, \ \ \Phi = \begin{pmatrix} & 1 \\ & \cdot & \\ 1 & & \end{pmatrix}$$

$$\Rightarrow$$
 U($n, \mathbb{F}_q((\varpi))$).

 γ regular semisimple in $gl(n, k((\varpi)))$

 \Rightarrow affine Springer fiber X_{γ} and its quotient $X_{\gamma}/\Lambda_{\gamma} = X_{\gamma}^0/\Lambda_{\gamma}^0$.

γ fixed by Frob_q

 \Rightarrow a twisted Frobenius endomorphism Frob_q on $X^0_{\gamma}/\Lambda^0_{\gamma}$.

GORESKY-KOTTWITZ-MACPHERSON APPROACH

If a projective variety over $k = \overline{\mathbb{F}}_q$ is equipped with a torus action satisfying the following properties:

- the fixed point set is finite,
- the set of one-dimentional orbits is finite,
- the ordinary *l*-adic cohomology is pure,

then one can explicitely compute its ℓ -adic cohomology:

- one first computes its *l*-adic equivariant cohomology for the torus action by using Atiyah-Borel-Segal's localization to the fixed point set,
- one recovers the ordinary cohomology from the equivariant one.

PURE *l*-ADIC COHOMOLOGY

 $k = \overline{\mathbb{F}}_q$, $\ell \neq p$, Z separated scheme of finite type over k

- Z defined over $\mathbb{F}_q \Rightarrow \operatorname{Frob}_q$ acts on $H^i(Z, \mathbb{Q}_\ell)$,
- *Hⁱ*(Z, Q_ℓ) is pure of weight *i* ⇔ ∀ eigenvalue α of Frob_q, |α| = q^{i/2},
- Z has pure ℓ -adic cohomology $\Leftrightarrow H^i(Z, \mathbb{Q}_\ell)$ is pure of weight $i, \forall i$.

Theorem (Deligne's main theorem)

Assume Z proper and smooth over k. Then Z has pure ℓ -adic cohomology.

The affine Springer fiber X_{γ} not of finite type but $H^{i}(X_{\gamma}, \mathbb{Q}_{\ell})$ makes sense.

Assume that G and γ are defined over \mathbb{F}_q .

Conjecture (Goresky-Kottwitz-MacPherson) The ℓ -adic cohomology of X_{γ} is pure.

Theorem (Goresky-Kottwitz-MacPherson)

Assume that γ is of equal valuations. Then the ℓ -adic cohomology of X_{γ} is pure.

TORUS ACTIONS ON AFFINE SPRINGER FIBERS

 $k = \overline{\mathbb{F}}_q$, $T \subset G = \operatorname{GL}(n)$ maximal torus of diagonal matrices,

$$\begin{split} \gamma &= \operatorname{diag}(\gamma_1, \dots, \gamma_n) \in \operatorname{gl}(n, k[[\varpi]]) \text{ regular semisimple } (\gamma_i \neq \gamma_j, \\ \forall i \neq j) \\ &\Rightarrow X_{\gamma} = \{ M \subset k((\varpi))^n \mid \gamma M \subset M \}, \end{split}$$

T and $\Lambda = X_*(T) = \mathbb{Z}^n$ act on X_γ and the two actions commute.

The fixed point set is discrete:

- $X_{\gamma}^{T} = \{\bigoplus_{i=1}^{n} \varpi^{-\lambda_{i}} k[[\varpi]] \mid \lambda \in \Lambda\},\$
- X_{γ}^{T} plus action of $\Lambda \cong \Lambda$ plus action by translations on itself.

EQUIVARIANT COHOMOLOGY OF AFFINE SPRINGER FIBERS

$$\begin{split} &H^{\bullet}_{T}(\operatorname{Spec}(k), \mathbb{Q}_{\ell}) = \operatorname{Sym}^{\bullet} X^{*}(T) \otimes \mathbb{Q}_{\ell} \supset \mathfrak{a} = H^{\bullet>0}_{T}(\operatorname{Spec}(k), \mathbb{Q}_{\ell}), \\ &H^{\bullet}_{T}(X^{T}_{\gamma}, \mathbb{Q}_{\ell}) = \operatorname{Sym}^{\bullet} X^{*}(T) \otimes \mathbb{Q}_{\ell}[[\Lambda]]. \end{split}$$

Theorem (Goresky-Kottwitz-MacPherson) Assume that $H^{\bullet}(X_{\gamma}, \mathbb{Q}_{\ell})$ is pure. Then:

- the restriction map $H^{\bullet}_{T}(X_{\gamma}, \mathbb{Q}_{\ell}) \to H^{\bullet}_{T}(X_{\gamma}^{T}, \mathbb{Q}_{\ell})$ is injective,
- its image = set of $f \in \operatorname{Sym}^{\bullet} X^*(T) \otimes \mathbb{Q}_{\ell}[[\Lambda]]$ such that

$$f(1 - \alpha^{\vee})^d \in \alpha^d \operatorname{Sym}^{\bullet - d} X^*(T) \otimes \mathbb{Q}_{\ell}[[\Lambda]],$$

 $\forall \alpha \in R(G, T), \forall d = 1, 2, \dots, v_F(\alpha(\gamma)),$

• $H^{\bullet}(X_{\gamma}, \mathbb{Q}_{\ell}) = H^{\bullet}_{T}(X_{\gamma}, \mathbb{Q}_{\ell})/\mathfrak{a}H^{\bullet}_{T}(X_{\gamma}, \mathbb{Q}_{\ell}).$

First main idea: Deform complicated affine Springer fibers into simpler ones (look for an analog of Grothendieck-Springer simultaneous resolution of the nilpotent cone). Problem: It does not seem to work!

Second main idea: Replace affine Springer fibers (local objects) by compactified Jacobians (global objects).

Third main idea: Hitchin fibration is a wonderful group theoretical family of compactified Jacobians.

PROBLEM IN DEFORMING AFFINE SPRINGER FIBERS

$$\gamma_t = \begin{pmatrix} t\varpi & 1\\ \varpi^3 & -t\varpi \end{pmatrix} \in \operatorname{gl}(2, k[[\varpi]])$$

For $t \neq 0$ the affine Springer fiber is a chain of projective lines

and for t = 0 it is a single projective line \Rightarrow no algebraic family.

Replace the affine Springer fiber at $t \neq 0$ by

and at t = 0 by

 \Rightarrow a nice algebraic family.

TORSION FREE MODULES

 $\gamma \in \operatorname{gl}(n, k[[\varpi]]) \subset \operatorname{gl}(n, k((\varpi)))$ regular semisimple, $P = P(\varpi, x) \in k[[\varpi]][x]$ minimal polynomial of γ , $R = k[[\varpi]][\gamma] = k[[\varpi]][x]/(P) \subset \operatorname{Frac}(R) = k((\varpi))[x]/(P)$, $\operatorname{Spf}(R)$ formal germ of plane curve $(P(\varpi, x) = 0)$.

- *P_R* moduli space of invertible *R*-modules *M* equipped with a rigidification *M* ⊗_{*R*} Frac(*R*) ≅ Frac(*R*), a commutative group scheme over *k* called the local Jacobian of Spf(*R*),
- \overline{P}_R moduli space of torsion free *R*-modules *M* equipped with a rigidification $M \otimes_R \operatorname{Frac}(R) \cong \operatorname{Frac}(R)$, an equivariant compactification of P_R called the local compactified Jacobian of $\operatorname{Spf}(R)$.

Proposition

The tautological map $X_{\gamma} \to \overline{P}_R$, (M stable by γ) \mapsto (the *R*-module M), is an homeomorphism.

COMPACTIFIED JACOBIANS

C integral projective curve over *k* with only plane curve singularities $(\hat{\mathcal{O}}_{C,c} \cong k[[x,y]]/(f), \forall c \in C)$.

- Pic(C) the moduli space of locally free O_C-Modules of rank
 1, a commutative group scheme over k called the Picard
 scheme or Jacobian of C,
- Pic(C) the moduli space of torsion free O_C-Modules of generic rank 1, an equivariant compactification of Pic(C) called the compactified Jacobian of C.

Proposition

We have a natural isomorphism of algebraic stacks:

$$[\overline{\operatorname{Pic}}(\mathcal{C})/\operatorname{Pic}(\mathcal{C})] \cong \prod_{c \in \mathcal{C}} [\overline{\mathcal{P}}_{\hat{\mathcal{O}}_{\mathcal{C},c}}/\mathcal{P}_{\hat{\mathcal{O}}_{\mathcal{C},c}}].$$

PURITY CONJECTURE FOR COMPACTIFIED JACOBIANS

The purity conjecture of Goresky, Kottwitz and MacPherson for affine Springer fibers together with the previous two propositions $(X_{\gamma} \cong \overline{P}_R \text{ and } [\overline{\operatorname{Pic}}(C)/\operatorname{Pic}(C)] \cong \prod_{c \in C} [\overline{P}_{\hat{\mathcal{O}}_{C,c}}/P_{\hat{\mathcal{O}}_{C,c}}])$ imply:

Conjecture

Let C be any integral projective curve over $k = \overline{\mathbb{F}}_q$. Assume C has only unibranch plane curve singularities. Then the ℓ -adic cohomology of $\overline{\text{Pic}}(C)$ is pure.

Variant with no unibranch assumption: replace $\overline{\operatorname{Pic}}(C)$ by a suitable étale covering.

HITCHIN FIBRATION

 Γ a fixed connected smooth projective curve over k, $g(\Gamma) \ge 2$, Δ a given effective Cartier divisor on Γ , $\deg(\Delta) > 2g(\Gamma) - 2$, \mathcal{M} the algebraic stack of Higgs (or Hitchin) pairs (\mathcal{E}, θ) where:

- \mathcal{E} rank *n* vector bundle on Γ ,
- $heta: \mathcal{E}
 ightarrow \mathcal{E}(\Delta)$,

$$\mathcal{A} = \bigoplus_{i=1}^{n} H^{0}(\Gamma, \mathcal{O}_{\Gamma}(i\Delta)).$$

Hitchin fibration: $m: \mathcal{M} \to \mathcal{A}$ with

$$m(\mathcal{E}, \theta) = (-\mathrm{tr}(\theta), \mathrm{tr}(\wedge^2 \theta), \dots, (-1)^n \mathrm{tr}(\wedge^n \theta))$$

SPECTRAL CURVES

$$\begin{split} p: \Sigma &= \mathbb{V}(\mathcal{O}_{\Gamma}(-\Delta)) \to \Gamma \text{ ruled surface,} \\ u &\in H^0(\Sigma, p^*\mathcal{O}_{\Gamma}(\Delta)) \text{ universal section.} \end{split}$$

 $a \in \mathcal{A} \Rightarrow$ the spectral curve $C_a \subset \Sigma$ with equation:

$$C_a = \{u^n + p^*a_1 \cdot u^{n-1} + \dots + p^*a_n = 0\},\$$

 $p: C_a \to \Gamma$ is a finite ramified covering of degree n.

Proposition (Beauville-Narasimhan-Ramanan) $\forall a \in A \text{ such that } C_a \text{ is reduced, } m^{-1}(a) = \mathcal{M}_a \text{ is canonically isomorphic to } \overline{\operatorname{Pic}}(C_a).$

ABOUT OUR PROOF

- First of all we work with the Hitchin fibration for an unramified unitary group scheme over Γ.
- Next we use Goresky-Kottwitz-MacPherson approach via equivariant cohomology, but now in family.
- The required purity conjecture follows from Deligne's purity theorem for $Rm_*\mathbb{Q}_\ell$ where $m: \mathcal{M} \to \mathcal{A}$ is the Hitchin fibration.