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In order to:

• compute the Hasse-Weil zeta functions of Shimura varieties
(for example Ag ),

• prove endoscopic cases of the Langlands functoriality (for
example the transfer from Sp(2n) to GL(2n)),

one first needs to stabilize the Arthur-Selberg trace formula.

This stabilization can only be done after having established some
combinatorial identities between orbital integrals for p-adic
reductive groups.

The series of these conjectural identities form the so-called
“Fundamental Lemma”.



• There are four variants of the Fundamental Lemma: ordinary,
twisted, weighted and twisted weighted.

• Here we only consider the ordinary Fundamental Lemma.

• First occurrence of the Fundamental Lemma in
Labesse-Langlands’ paper (1979).

• General formulation of the Fundamental Lemma by
Langlands-Shelstad (1987).



ORBITAL INTEGRALS FOR GL(n)

OG
γ =

∫
Gγ(F )\G(F )

1K(g−1γg)
dg

dgγ

F non archimedan local field: for example F = Qp or Fp(($))
OF the ring of integers of F : OQp = Zp and OFp(($)) = Fp[[$]]

G = GL(n), G (F ) p-adic or $-adic Lie group
K = G (OF ) ⊂ G (F ) maximal compact open subgroup

g = gl(n,F ) the Lie algebra of G (F )
K = Lie(K ) = gl(n,OF ): an OF -lattice in the F -vector space g

1K : g → {0, 1} the characteristic function of K

γ ∈ g regular semisimple
⇒ its centralizer Gγ is a maximal torus in G

dg and dgγ Haar measures on G (F ) and Gγ(F )



ORBITAL INTEGRALS FOR GL(n) AS NUMBERS OF
LATTICES

Lemma
OG

γ = |Xγ/Λγ |.

Here:

• Xγ = {OF -lattices M ⊂ F n | γ(M) ⊂ M},
• γ ∈ g regular semisimple ⇔ F [γ] ⊂ g commutative

semisimple F -algebra of dimension n ⇒ F [γ] =
∏

i∈I Ei where
(Ei )i∈I is a finite family of finite separable extensions of F ,

• choices of uniformizers $Ei
’s in the Ei ’s ⇒ F [γ]× ∼= Λγ × Kγ

where Λγ = ZI and Kγ =
∏

i∈I O
×
Ei

maximal compact open

subgroup of Gγ(F ) = F [γ]×,

• Λγ ⊂ Gγ(F ) acts freely on Xγ ,

• vol(K ,dg) = vol(Kγ ,dgγ) = 1.



UNITARY GROUPS

• [F ′ : F ] = 2 unramified, Gal(F ′/F ) = {1, τ}.

• Φn : F ′n × F ′n → F ′, (x , y) 7→ xτ
1 yn + xτ

2 yn−1 + · · ·+ xτ
n y1,

standard hermitian form
⇒ G (F ) = U(n,F ) ⊂ GL(n,F ′) unitary group.

• (Ei )i∈I finite family of finite separable extensions of F such
that Ei is disjoint of F ′

⇒ E ′
i = EiF

′, Gal(E ′
i /Ei ) ∼= Gal(F ′/F ) = {1, τ}.

• c = (ci )i∈I , ci ∈ Ei ⇒ (E ′
I ,ΦI ,c) =

⊕
i∈I (E

′
i ,Φi ,ci

) hermitian
space where: Φi ,ci

: E ′
i × E ′

i → F ′, (x , y) 7→ TrE ′
i /F ′(cix

τy).

• discr(Φi ,ci
),discr(ΦI ,c) ∈ F×/NF ′/FF ′× ∼= Z/2Z,

discr(ΦI ,c) =
∑
i∈I

discr(Φi ,ci
).



ORBITAL INTEGRALS FOR UNITARY GROUPS

• Assume discr(ΦI ,c) = 0 ⇒ (E ′
I ,ΦI ,c) ∼= (F ′n,Φn).

• Choosing such an isomorphism
⇒ ιc :

⊕
i∈I{x ∈ E ′

i | xτ + x = 0} ⊂ EndF ′(E ′
I ,ΦI ,c) ∼= g.

• γ = (γi )i∈I ∈ E ′
I such that:

- γτ
i + γi = 0,

- E ′
i = F ′[γi ] ∼= F ′[x ]/(Pi ), Pi the minimal polynomial of γi ,

- (Pi ,Pj) = 1, ∀ i 6= j ,

⇒ regular semisimple γc = ιc(γ) ∈ g.

Lemma
OG

γc
= the number of OF ′-lattices M ⊂ E ′

I such that:

• M⊥c := {x ∈ E ′
I | ΦI ,c(x ,M) ⊂ OF ′} = M,

• γM ⊂ M.



STABLE CONJUGACY

• The G (F )-conjugacy class of γc in g does not depend on the
choice of the isomorphism (E ′

I ,ΦI ,c) ∼= (F ′n,Φn).

• The γc ’s are stably conjugated: they are conjugated in
GL(n,F ′) but not necessarily in G (F ).

• The G (F )-conjugacy class of γc only depends on

µ(c) = (discr(Φi ,ci
))i∈I ∈ (Z/2Z)I .

• As discr(ΦI ,c) = 0, µ(c) lives in Λ0
γ/2Λ0

γ where

Λ0
γ = Ker(+ : ZI → Z).

In other words γ defines a stable conjugacy class in g and inside
this stable conjugacy class there are finitely many G (F )-conjugacy
classes, which are parametrized by Λ0

γ/2Λ0
γ .



κ-ORBITAL INTEGRALS FOR UNITARY GROUPS

• For each µ ∈ Λ0
γ/2Λ0

γ let us choose cµ with µ(cµ) = µ. The
γcµ ’s form a system of representatives of the G (F )-conjugacy
classes in the stable conjugacy class defined by γ.

• For any κ : Λ0
γ/2Λ0

γ → {±1} we then have the κ-orbital
integral:

OG ,κ
γ =

∑
µ∈Λ0

γ/2Λ0
γ

κ(µ)OG
γcµ

.

• For κ = 1, the κ-orbital integral is also called the stable
orbital integral:

SOG
γ := OG ,1

γ .



LANGLANDS-SHELSTAD FUNDAMENTAL LEMMA
FOR UNITARY GROUPS

Conjecture (Langlands-Shelstad)

OG ,κ
γ = (−q)rSOH

γ .

Here:

• G = U(n), γ = γI = (γi )i∈I ∈
⊕

i∈I{x ∈ E ′
i | xτ + x = 0},

• κ : Λ0
γ/2Λ0

γ → {±1} ⇔ I = I1 q I2
⇒ endoscopic group H = U(n1)×U(n2) with nα = |Iα|,

• SOH
γ := SOU(n1)

γI1
× SOU(n2)

γI2
,

• q the number of elements of the residue field of F ,

• r the valuation of the resultant of
∏

i∈I1
Pi and

∏
i∈I2

Pi

(Pi the minimal polynomial of γi over F ′).

The computation of the transfer factor is due to Waldspurger.



RESULTS (CLASSICAL METHODS)

• Labesse-Langlands (1979): U(2).

• Kottwitz (1992) and Rogawski (1990): U(3).

• Waldspurger (2005):
The equal characteristic case (F ⊃ Fp(($)))
⇒ the unequal characteristic case (F ⊃ Qp).



RESULTS (GEOMETRIC METHODS)

F = Fq(($)), Fq finite field of characteristic p.

Theorem (Goresky-Kottwitz-MacPherson)

The Langlands-Sheldstad Fundamental Lemma for unitary groups
holds if the following conditions are satisfied

• p � 0,

• Ei = E does not depend on i ∈ I and is unramified over F ,

• vF (α(γ)) = vF (β(γ)) for every pair of roots (α, β).

This is the unramified equal valuation case.

Theorem (Ngô-L.)

The Langlands-Sheldstad Fundamental Lemma for unitary groups
holds if p > n.



Grothendieck-Lefschetz fixed point formula

The key of the geometric approaches is:

Theorem (Grothendieck-Lefschetz fixed point formula)

OG ,κ
γ =

∑
i

(−1)iTr(Frob∗q,H
i (X 0

γ /Λ0
γ ,Lκ)).

Here:

• X 0
γ is an algebraic variety over Fq, a connected component of

the affine Springer fiber Xγ ,

• Λ0
γ is a lattice acting freely on X 0

γ ,

• Lκ is the rank 1 `-adic local system on X 0
γ /Λ0

γ defined by the
covering X 0

γ → X 0
γ /Λ0

γ and the character κ of its Galois group
Λ0

γ (` 6= Char(Fq)),

• Frobq is a suitable Frobenius endomorphism.

Natural expectation: The Fundamental Lemma is the consequence
of a (stronger) cohomological statement.



AFFINE SPRINGER FIBERS FOR GL(n)

k algebraically closed, n > 0

⇒ the affine Grassmannian: X = {k[[$]]-lattices M ⊂ k(($))n},
an ind-scheme over k whose connected components are:
X d = {M ∈ X | [M : k[[$]]n] = d}, d ∈ Z.

γ ∈ gl(n, k(($))) regular semisimple

⇒ the affine Springer fiber: Xγ = {M ∈ X | γ(M) ⊂ M},
a closed ind–subscheme of X .

k(($))[γ] =
∏

i∈I Ei , choosing uniformizers $Ei
’s of Ei ’s

⇒ free action of Λγ = ZI on Xγ by λ ·M = ($−λi
Ei

)i∈I (M),

Λ0
γ = Ker(+ : ZI → Z) stabilizes X 0

γ .

Theorem (Kazhdan-Lusztig)
• Xγ scheme locally of finite type over k and of finite dimension,

whose connected components are the X d
γ := Xγ ∩ X d ’s,

• Xγ/Λγ = X 0
γ /Λ0

γ is a projective scheme.



FROBENIUS ENDOMORPHISM

k = Fq

Twisted Frobenius on GL(n, k(($))) with respect to Fq:

Frobq(g) = Φ · t(
∑
m

gq
ij ,m$m)−1 · Φ, Φ =

 1

· ·
·

1


⇒ U(n, Fq(($))).

γ regular semisimple in gl(n, k(($)))

⇒ affine Springer fiber Xγ and its quotient Xγ/Λγ = X 0
γ /Λ0

γ .

γ fixed by Frobq

⇒ a twisted Frobenius endomorphism Frobq on X 0
γ /Λ0

γ .



GORESKY-KOTTWITZ-MACPHERSON APPROACH

If a projective variety over k = Fq is equipped with a torus action
satisfying the following properties:

• the fixed point set is finite,

• the set of one-dimentional orbits is finite,

• the ordinary `-adic cohomology is pure,

then one can explicitely compute its `-adic cohomology:

• one first computes its `-adic equivariant cohomology for the
torus action by using Atiyah-Borel-Segal’s localization to the
fixed point set,

• one recovers the ordinary cohomology from the equivariant
one.



PURE `-ADIC COHOMOLOGY

k = Fq, ` 6= p, Z separated scheme of finite type over k

• Z defined over Fq ⇒ Frobq acts on H i (Z , Q`),

• H i (Z , Q`) is pure of weight i

⇔ ∀ eigenvalue α of Frobq, |α| = q
i
2 ,

• Z has pure `-adic cohomology
⇔ H i (Z , Q`) is pure of weight i , ∀ i .

Theorem (Deligne’s main theorem)

Assume Z proper and smooth over k. Then Z has pure `-adic
cohomology.



`-ADIC COHOMOLOGY OF AFINE SPRINGER FIBERS

The affine Springer fiber Xγ not of finite type but H i (Xγ , Q`)
makes sense.

Assume that G and γ are defined over Fq.

Conjecture (Goresky-Kottwitz-MacPherson)

The `-adic cohomology of Xγ is pure.

Theorem (Goresky-Kottwitz-MacPherson)

Assume that γ is of equal valuations. Then the `-adic cohomology
of Xγ is pure.



TORUS ACTIONS ON AFFINE SPRINGER FIBERS

k = Fq, T ⊂ G = GL(n) maximal torus of diagonal matrices,

γ = diag(γ1, . . . , γn) ∈ gl(n, k[[$]]) regular semisimple (γi 6= γj ,
∀ i 6= j)

⇒ Xγ = {M ⊂ k(($))n | γM ⊂ M},

T and Λ = X∗(T ) = Zn act on Xγ and the two actions commute.

The fixed point set is discrete:

• XT
γ = {

⊕n
i=1 $−λi k[[$]] | λ ∈ Λ},

• XT
γ plus action of Λ ∼= Λ plus action by translations on itself.



EQUIVARIANT COHOMOLOGY OF AFFINE
SPRINGER FIBERS

H•
T (Spec(k), Q`) = Sym•X ∗(T )⊗Q` ⊃ a = H•>0

T (Spec(k), Q`),

H•
T (XT

γ , Q`) = Sym•X ∗(T )⊗Q`[[Λ]].

Theorem (Goresky-Kottwitz-MacPherson)

Assume that H•(Xγ , Q`) is pure. Then:

• the restriction map H•
T (Xγ , Q`) → H•

T (XT
γ , Q`) is injective,

• its image = set of f ∈ Sym•X ∗(T )⊗Q`[[Λ]] such that

f (1− α∨)d ∈ αdSym•−dX ∗(T )⊗Q`[[Λ]],

∀ α ∈ R(G ,T ), ∀ d = 1, 2, . . . , vF (α(γ)),

• H•(Xγ , Q`) = H•
T (Xγ , Q`)/aH•

T (Xγ , Q`).



NGÔ-L. APPROACH

First main idea: Deform complicated affine Springer fibers into
simpler ones (look for an analog of Grothendieck-Springer
simultaneous resolution of the nilpotent cone).
Problem: It does not seem to work!

Second main idea: Replace affine Springer fibers (local objects) by
compactified Jacobians (global objects).

Third main idea: Hitchin fibration is a wonderful group theoretical
family of compactified Jacobians.



PROBLEM IN DEFORMING AFFINE SPRINGER FIBERS

γt =

(
t$ 1
$3 −t$

)
∈ gl(2, k[[$]])

For t 6= 0 the affine Springer fiber is a chain of projective lines

and for t = 0 it is a single projective line

⇒ no algebraic family.

Replace the affine Springer fiber at t 6= 0 by

and at t = 0 by

⇒ a nice algebraic family.



TORSION FREE MODULES
γ ∈ gl(n, k[[$]]) ⊂ gl(n, k(($))) regular semisimple,
P = P($, x) ∈ k[[$]][x ] minimal polynomial of γ,
R = k[[$]][γ] = k[[$]][x ]/(P) ⊂ Frac(R) = k(($))[x ]/(P),
Spf(R) formal germ of plane curve (P($, x) = 0).

• PR moduli space of invertible R-modules M equipped with a
rigidification M ⊗R Frac(R) ∼= Frac(R), a commutative group
scheme over k called the local Jacobian of Spf(R),

• PR moduli space of torsion free R-modules M equipped with
a rigidification M ⊗R Frac(R) ∼= Frac(R), an equivariant
compactification of PR called the local compactified Jacobian
of Spf(R).

Proposition

The tautological map Xγ → PR , (M stable by γ) 7→ (the
R-module M), is an homeomorphism.



COMPACTIFIED JACOBIANS
C integral projective curve over k with only plane curve
singularities (ÔC ,c

∼= k[[x , y ]]/(f ), ∀c ∈ C ).

• Pic(C ) the moduli space of locally free OC -Modules of rank
1, a commutative group scheme over k called the Picard
scheme or Jacobian of C ,

• Pic(C ) the moduli space of torsion free OC -Modules of
generic rank 1, an equivariant compactification of Pic(C )
called the compactified Jacobian of C .

Proposition

We have a natural isomorphism of algebraic stacks:

[Pic(C )/Pic(C )] ∼=
∏
c∈C

[PÔC ,c
/PÔC ,c

].



PURITY CONJECTURE FOR COMPACTIFIED
JACOBIANS

The purity conjecture of Goresky, Kottwitz and MacPherson for
affine Springer fibers together with the previous two propositions
(Xγ

∼= PR and [Pic(C )/Pic(C )] ∼=
∏

c∈C [PÔC ,c
/PÔC ,c

]) imply:

Conjecture

Let C be any integral projective curve over k = Fq. Assume C has
only unibranch plane curve singularities. Then the `-adic
cohomology of Pic(C ) is pure.

Variant with no unibranch assumption: replace Pic(C ) by a
suitable étale covering.



HITCHIN FIBRATION

Γ a fixed connected smooth projective curve over k, g(Γ) ≥ 2,

∆ a given effective Cartier divisor on Γ, deg(∆) > 2g(Γ)− 2,

M the algebraic stack of Higgs (or Hitchin) pairs (E , θ) where:

• E rank n vector bundle on Γ,

• θ : E → E(∆),

A =
⊕n

i=1 H0(Γ,OΓ(i∆)).

Hitchin fibration: m : M→A with

m(E , θ) = (−tr(θ), tr(∧2θ), . . . , (−1)ntr(∧nθ))



SPECTRAL CURVES

p : Σ = V(OΓ(−∆)) → Γ ruled surface,

u ∈ H0(Σ, p∗OΓ(∆)) universal section.

a ∈ A ⇒ the spectral curve Ca ⊂ Σ with equation:

Ca = {un + p∗a1 · un−1 + · · ·+ p∗an = 0},

p : Ca → Γ is a finite ramified covering of degree n.

Proposition (Beauville-Narasimhan-Ramanan)

∀ a ∈ A such that Ca is reduced, m−1(a) = Ma is canonically
isomorphic to Pic(Ca).



ABOUT OUR PROOF

• First of all we work with the Hitchin fibration for an
unramified unitary group scheme over Γ.

• Next we use Goresky-Kottwitz-MacPherson approach via
equivariant cohomology, but now in family.

• The required purity conjecture follows from Deligne’s purity
theorem for Rm∗Q` where m : M→A is the Hitchin
fibration.


