Cleavage Fragment Statistics
for Peptide Mass Fingerprinting
with Weight-Accumulating Markov Models

Sven Rahmann

Algorithms and Statistics for Systems Biology Group
Genome Informatics, Faculty of Technology, Bielefeld University, Germany

DMV-Jahrestagung, Bonn, 21.09.2006

Sven Rahmann (Bielefeld) Cleavage Fragment Statistics DMV, Bonn, 09/2006 1/19

un
EEER | \ernaTIONAL GRADUATE ScHOO
H



Peptide Mass Fingerprinting

Protein Identification
@ Isolate all copies of one protein from a cell
@ Digest these proteins deterministically into fragments (peptides)
@ Measure fragment masses by mass spectrometry

o Compare peptide mass fingerprint (PMF) to predicted PMF of
database proteins

@ Return database protein that “fits best”

@ Compute significance of “best fit”
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Peptide Mass Fingerprinting
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Protein Space — just strings

Definition (Protein sequence) J

A protein is a word of some length ¢ > 1 over amino acid alphabet Y.
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Protein Space — just strings

Definition (Protein sequence)

A protein is a word of some length ¢ > 1 over amino acid alphabet Y.

Definition (Random protein model)

For a given length ¢ > 1 and amino acid frequencies f = (f(a))a.ex,
assign a probability to every protein sequence s = (si,. .., s):

Py(S =s) =[] f(s)

i=1
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Protein Space — just strings

Definition (Protein sequence)

A protein is a word of some length ¢ > 1 over amino acid alphabet Y.

Definition (Random protein model)

For a given length ¢ > 1 and amino acid frequencies f = (f(a))a.ex,
assign a probability to every protein sequence s = (si,. .., s):

Py(S =s) =[] f(s)

i=1

No masses so far
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Protein masses — weighted strings

Definition (Amino acid mass)
Every amino acid a has a mass distribution £,, derived from
@ isotopic distributions of its component atoms,

@ modification probabilities,

@ mass distributions of modifying groups.
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Protein masses — weighted strings

Definition (Amino acid mass)

Every amino acid a has a mass distribution £,, derived from
@ isotopic distributions of its component atoms,
@ modification probabilities,
@ mass distributions of modifying groups.

Definition (Protein mass)

Every amino acid s; of protein s € ¥‘ has a random mass i, drawn
from its distribution L.

M5:M51+M52+"'+M52 and ES:£51*£SQ*“'*£SZ'
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Protein Cleavage — getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (I, ) is specified by
@ a set [ of cleavage characters
@ a set 1 of prohibition characters

Semantics: cut after aa from I unless followed by aa from 1.
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Protein Cleavage — getting the PMF

Definition (Standard cleavage scheme)
A standard cleavage scheme (I, ) is specified by
@ a set [ of cleavage characters

@ a set [1 of prohibition characters

Semantics: cut after aa from I unless followed by aa from 1.

Example (Trypsin)

I = {K,R}, N = {P}; cuts after lys or arg unless followed by pro.

SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.
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Protein Cleavage — getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (I, ) is specified by
@ a set [ of cleavage characters
@ a set [1 of prohibition characters

Semantics: cut after aa from I unless followed by aa from 1.
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Example (Trypsin)

I = {K,R}, N = {P}; cuts after lys or arg unless followed by pro.
SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.
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Computational problems

For given
@ random protein model and sequence length,
@ amino acid mass distribution, and

@ cleavage rules,
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Computational problems

For given
@ random protein model and sequence length,
@ amino acid mass distribution, and
@ cleavage rules,

determine efficiently

@ the distribution of the number of fragments,
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For given
@ random protein model and sequence length,
@ amino acid mass distribution, and
@ cleavage rules,

determine efficiently
@ the distribution of the number of fragments,
@ the distribution of the fragment lengths,
@ the joint length-mass distribution, and
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Computational problems

For given
@ random protein model and sequence length,
@ amino acid mass distribution, and
@ cleavage rules,

determine efficiently
@ the distribution of the number of fragments,
@ the distribution of the fragment lengths,
@ the joint length-mass distribution, and

@ mass occurrence probabilities: probability that there exists at
least one fragment with mass in a given range
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Possible approaches

@ Enumeration of all 20¢ protein sequences
Exact, but infeasible for £ > 10
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Not exact (rare events)
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Possible approaches

@ Enumeration of all 20 protein sequences
Exact, but infeasible for ¢ > 10

@ Sampling of random proteins
Not exact (rare events)

@ Estimation from database

Large database required for high precision
Also not exact (rare events)
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Possible approaches

@ Enumeration of all 20 protein sequences
Exact, but infeasible for ¢ > 10

@ Sampling of random proteins
Not exact (rare events)

@ Estimation from database

Large database required for high precision
Also not exact (rare events)

Is there an exact and efficient method?
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“Weight-accumulating Markov Chains (WAMMs)”

(‘(1) Cleavage point (b) Cleavage point

WAMM: generative probabilistic cleavage model
Left: Initial fragment. Right: Following fragments.
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“Weight-accumulating Markov Chains (WAMMs)”

(‘(1) Cleavage point (b) Cleavage point
WAMM: generative probabilistic cleavage model
Left: Initial fragment. Right: Following fragments.

A WAMM can be derived from a standard cleavage scheme (I, 1), or
from more complicated cleavage rules.
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e h![m] := P(in state i after / steps, accumulated mass m),

@ gi[m] := P(mass = m | State = i),
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e h![m] := P(in state i after / steps, accumulated mass m),

@ gi[m] := P(mass = m | State = i),
@ Matrix P := Transition matrix of the WAMM.
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for Probability Computations

1—

(b)

e h![m] := P(in state i after / steps, accumulated mass m),
@ gi[m] := P(mass = m | State = i),
@ Matrix P := Transition matrix of the WAMM.

Then  hi[m] = > (Z b [m — m'] - Pki) - gi[m']

m’ k
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for Probability Computations

1—

(b)

e h![m] := P(in state i after / steps, accumulated mass m),
@ gi[m] := P(mass = m | State = i),
@ Matrix P := Transition matrix of the WAMM.

Then  hi[m] = > (Z b [m — m'] - Pki) - gi[m']

P(fragment has length / and mass m) = h!El..[m]

Sven Rahmann (Bielefeld) Cleavage Fragment Statistics DMV, Bonn, 09/2006

10 / 19



Using WAMM s for Probability Computations

1-7

e Matrix H!) := (h,/'[m])mEmasses, i€Estates
(contains the joint mass-state distribution after / steps),
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Using WAMM s for Probability Computations

1—19

oint (b)

o Matrix H(I) = (h,l'[m])memasses, i€states
(contains the joint mass-state distribution after / steps),

e Matrix G := (gi[rn])memasses7 iEstates
@ Matrix P := Transition matrix of the WAMM.
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1-7

o Matrix H(I) = (h,l'[m])memasses, i€states
(contains the joint mass-state distribution after / steps),

e Matrix G := (gi[rn])memasses7 iEstates
@ Matrix P := Transition matrix of the WAMM.

Then  HO = (HU=Y.P)xG.
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Using WAMM s for Probability Computations

1—19

oint (b)

o Matrix H(I) = (h,l'[m])memasses, i€states
(contains the joint mass-state distribution after / steps),

e Matrix G := (gi[rn])memasses7 iEstates
@ Matrix P := Transition matrix of the WAMM.

Then  HO = (HU=Y.P)xG.

This is an update formula for the mass-state distribution.
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Results: Number of Fragments
Fragment number distribution of proteins of length 207 4 7.
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Fragment Lengths

Distribution of fragment lengths of SwissProt proteins
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Joint Length-Mass Distribution
Fragment mass distribution; length = 15, High precision = 0.1 Da.
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Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300
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Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300
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Mass Occurrence Probabilities
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Summary

@ New computational framework “WAMM"
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Summary

@ New computational framework “WAMM"

@ Only aa frequencies needed
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Summary

@ New computational framework “WAMM"
@ Only aa frequencies needed

@ Elegant formulation and update equation:
HO = (0. P)+ G.
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Summary

@ New computational framework “WAMM"

@ Only aa frequencies needed

@ Elegant formulation and update equation:
HO = (HO-D . P)« G.

@ Applicable to probability computations in mass spectrometry,
to significance computations for peptide mass fingerprinting,
e.g., what's the probability that a random protein contains a
fragment with mass in a given range?
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Questions?
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