Cleavage Fragment Statistics for Peptide Mass Fingerprinting with Weight-Accumulating Markov Models

Sven Rahmann

Algorithms and Statistics for Systems Biology Group Genome Informatics, Faculty of Technology, Bielefeld University, Germany

DMV-Jahrestagung, Bonn, 21.09.2006

Peptide Mass Fingerprinting

Protein Identification

- Isolate all copies of one protein from a cell
- Digest these proteins deterministically into fragments (peptides)
- Measure fragment masses by mass spectrometry
- Compare peptide mass fingerprint (PMF) to predicted PMF of database proteins
- Return database protein that "fits best"
- Compute significance of "best fit"

Peptide Mass Fingerprinting

Protein Space – just strings

Definition (Protein sequence)

A protein is a word of some length $\ell \geq 1$ over amino acid alphabet $\Sigma.$

Protein Space – just strings

Definition (Protein sequence)

A protein is a word of some length $\ell \geq 1$ over amino acid alphabet $\Sigma.$

Definition (Random protein model)

For a given length $\ell \geq 1$ and amino acid frequencies $f = (f(a))_{a \in \Sigma}$, assign a probability to every protein sequence $s = (s_1, \ldots, s_\ell)$:

$$\mathbb{P}_{\ell}(S=s) = \prod_{i=1}^{\ell} f(s_i).$$

Protein Space – just strings

Definition (Protein sequence)

A protein is a word of some length $\ell \geq 1$ over amino acid alphabet $\Sigma.$

Definition (Random protein model)

For a given length $\ell \geq 1$ and amino acid frequencies $f = (f(a))_{a \in \Sigma}$, assign a probability to every protein sequence $s = (s_1, \ldots, s_\ell)$:

$$\mathbb{P}_{\ell}(S=s)=\prod_{i=1}^{\ell}f(s_i).$$

No masses so far

Protein masses – weighted strings

Definition (Amino acid mass)

Every amino acid a has a mass distribution \mathcal{L}_a , derived from

- isotopic distributions of its component atoms,
- modification probabilities,
- mass distributions of modifying groups.

Protein masses – weighted strings

Definition (Amino acid mass)

Every amino acid a has a mass distribution \mathcal{L}_a , derived from

- isotopic distributions of its component atoms,
- modification probabilities,
- mass distributions of modifying groups.

Definition (Protein mass)

Every amino acid s_i of protein $s \in \Sigma^{\ell}$ has a random mass μ_{s_i} drawn from its distribution \mathcal{L}_{s_i} .

$$\mu_{\mathbf{s}} = \mu_{\mathbf{s}_1} + \mu_{\mathbf{s}_2} + \dots + \mu_{\mathbf{s}_\ell} \quad \text{ and } \quad \mathcal{L}_{\mathbf{s}} = \mathcal{L}_{\mathbf{s}_1} \star \mathcal{L}_{\mathbf{s}_2} \star \dots \star \mathcal{L}_{\mathbf{s}_\ell}.$$

Protein Cleavage – getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (Γ, Π) is specified by

- a set Γ of cleavage characters
- a set Π of prohibition characters

Semantics: cut after aa from Γ unless followed by aa from Π .

Protein Cleavage – getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (Γ, Π) is specified by

- a set Γ of cleavage characters
- a set Π of prohibition characters

Semantics: cut after aa from Γ unless followed by aa from Π .

Example (Trypsin)

 $\Gamma = \{K, R\}$, $\Pi = \{P\}$; cuts after lys or arg unless followed by pro. SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.

Protein Cleavage – getting the PMF

Definition (Standard cleavage scheme)

A standard cleavage scheme (Γ, Π) is specified by

- a set Γ of cleavage characters
- a set Π of prohibition characters

Semantics: cut after aa from Γ unless followed by aa from Π .

Example (Trypsin)

 $\Gamma = \{K, R\}$, $\Pi = \{P\}$; cuts after lys or arg unless followed by pro. SwissProt frequencies: f(K) + f(R) = 11.25%, f(P) = 4.83%.

For given

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

For given

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

the distribution of the number of fragments,

For given

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

- the distribution of the number of fragments,
- the distribution of the fragment lengths,

For given

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

- the distribution of the number of fragments,
- the distribution of the fragment lengths,
- the joint length-mass distribution, and

For given

- random protein model and sequence length,
- amino acid mass distribution, and
- cleavage rules,

determine efficiently

- the distribution of the number of fragments,
- the distribution of the fragment lengths,
- the joint length-mass distribution, and
- mass occurrence probabilities: probability that there exists at least one fragment with mass in a given range

- ullet Enumeration of all 20^ℓ protein sequences
 - Exact, but infeasible for $\ell \geq 10$

- Enumeration of all 20^{ℓ} protein sequences
 - Exact, but infeasible for $\ell \geq 10$
- Sampling of random proteins
 - Not exact (rare events)

- Enumeration of all 20^ℓ protein sequences
 - Exact, but infeasible for $\ell \geq 10$
- Sampling of random proteins
 - Not exact (rare events)
- Estimation from database
 - Large database required for high precision
 - Also not exact (rare events)

- Enumeration of all 20^ℓ protein sequences
 - Exact, but infeasible for $\ell \geq 10$
- Sampling of random proteins
 - Not exact (rare events)
- Estimation from database
 - Large database required for high precision
 - Also not exact (rare events)

Is there an exact and efficient method?

"Weight-accumulating Markov Chains (WAMMs)"

WAMM: generative probabilistic cleavage model Left: Initial fragment. Right: Following fragments.

"Weight-accumulating Markov Chains (WAMMs)"

WAMM: generative probabilistic cleavage model

Left: Initial fragment. Right: Following fragments.

A WAMM can be derived from a standard cleavage scheme (Γ, Π) , or from more complicated cleavage rules.

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m)$,
- $g_i[m] := \mathbb{P}(\mathsf{mass} = m \mid \mathsf{State} = i),$

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m)$,
- $g_i[m] := \mathbb{P}(\mathsf{mass} = m \mid \mathsf{State} = i)$,
- Matrix P := Transition matrix of the WAMM.

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m),$
- $g_i[m] := \mathbb{P}(\mathsf{mass} = m \mid \mathsf{State} = i)$,
- Matrix P := Transition matrix of the WAMM.

Then
$$h_i^I[m] = \sum_{m'} \left(\sum_k h_k^{I-1}[m-m'] \cdot P_{ki} \right) \cdot g_i[m']$$

- $h'_i[m] := \mathbb{P}(\text{in state } i \text{ after } l \text{ steps, accumulated mass } m),$
- $g_i[m] := \mathbb{P}(\mathsf{mass} = m \mid \mathsf{State} = i)$,
- Matrix P := Transition matrix of the WAMM.

Then
$$h_i^I[m] = \sum_{m'} \left(\sum_k h_k^{I-1}[m-m'] \cdot P_{ki} \right) \cdot g_i[m']$$

 $\mathbb{P}(\text{fragment has length } I \text{ and mass } m) = h_i^{I+1}[m]$

• Matrix $H^{(I)} := (h_i^I[m])_{m \in \text{masses}, i \in \text{states}}$ (contains the joint mass-state distribution after I steps),

- Matrix $H^{(I)} := (h_i^I[m])_{m \in \text{masses}, i \in \text{states}}$ (contains the joint mass-state distribution after I steps),
- Matrix $G := (g_i[m])_{m \in \mathsf{masses}, \ i \in \mathsf{states}}$,
- Matrix P := Transition matrix of the WAMM.

- Matrix $H^{(I)} := (h_i^I[m])_{m \in \text{masses}, i \in \text{states}}$ (contains the joint mass-state distribution after I steps),
- Matrix $G := (g_i[m])_{m \in \mathsf{masses}, i \in \mathsf{states}}$,
- Matrix P := Transition matrix of the WAMM.

Then
$$H^{(l)} = (H^{(l-1)} \cdot P) \star G$$
.

- Matrix $H^{(I)} := (h_i^I[m])_{m \in \text{masses}, i \in \text{states}}$ (contains the joint mass-state distribution after I steps),
- Matrix $G := (g_i[m])_{m \in \mathsf{masses}, i \in \mathsf{states}}$,
- Matrix P := Transition matrix of the WAMM.

Then
$$H^{(l)} = (H^{(l-1)} \cdot P) \star G$$
.

This is an update formula for the mass-state distribution.

Results: Number of Fragments

Fragment number distribution of proteins of length 207 ± 7 .

Fragment Lengths

Distribution of fragment lengths of SwissProt proteins

Joint Length-Mass Distribution

Fragment mass distribution; length = 15, High precision = 0.1 Da.

Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300

Mass Occurrence Probabilities

Fragment mass occurrence probabilities for proteins of length 300

Mass Occurrence Probabilities

• New computational framework "WAMM"

- New computational framework "WAMM"
- Only aa frequencies needed

- New computational framework "WAMM"
- Only aa frequencies needed
- Elegant formulation and update equation: $H^{(l)} = (H^{(l-1)} \cdot P) \star G$.

- New computational framework "WAMM"
- Only aa frequencies needed
- Elegant formulation and update equation: $H^{(l)} = (H^{(l-1)} \cdot P) \star G$.
- Applicable to probability computations in mass spectrometry, to significance computations for peptide mass fingerprinting, e.g., what's the probability that a random protein contains a fragment with mass in a given range?

Acknowledgments

Joint work with

- Hans-Michael Kaltenbach
- Sebastian Böcker

Acknowledgments

Joint work with

- Hans-Michael Kaltenbach
- Sebastian Böcker

Thanks to

- International NRW Graduate School in Bioinformatics and Genome Research, Bielefeld
- Henner Sudek, Marcel Martin and Tobias Marschall

Acknowledgments

Joint work with

- Hans-Michael Kaltenbach
- Sebastian Böcker

Thanks to

- International NRW Graduate School in Bioinformatics and Genome Research, Bielefeld
- Henner Sudek, Marcel Martin and Tobias Marschall

Thank you for listening

Questions?

