

Minisymposium 21 - Automorphic forms and their applications

The theta divisor and its "square"

RAINER WEISSAUER (HEIDELBERG)

Let *C* be a smooth projective curve over an algebraically closed field *k* and let (X, Θ) be its Jacobian variety *X*, with the associated theta divisor Θ . Let δ_{Θ} denote the intersection cohomology sheaf of Θ , a perverse sheaf on *X*. Then the convolution product

 $\delta_\Theta \ast \delta_\Theta$

is a sheaf complex on X. It is a direct sum $\bigoplus_{A,\mu} m(\mu, A) \cdot A[\mu]$ of translates of irreducible perverse sheaves A on X with certain multiplicities $m(\mu, A)$. By definition the coefficients of $\delta_{\Theta} * \delta_{\Theta}$ are those A, for which the multiplicity $m(\mu, A)$ is nonzero for some $\mu \in \mathbb{Z}$. The coefficients A are sheaf complexes on X. Let $\mathcal{H}^{\nu}(A)$ denote their associated cohomology sheaves on X for $\nu \in \mathbb{Z}$. Let $\kappa \in X(k)$ be the Riemann constant defined by $\Theta = \kappa - \Theta$ (it depends on the choice of the Abel-Jacobi map $C \to X$). Then we show

Theorem For a curve *C* of genus $g \ge 3$ there exists a unique irreducible perverse sheaf *A* among the coefficients of $\delta_{\Theta} * \delta_{\Theta}$, characterized by one of the following equivalent properties

- (1) $\mathcal{H}^{-1}(A)$ is nonzero, but not a constant sheaf on *X*.
- (2) $\mathcal{H}^{-1}(A)$ is a skyscraper sheaf on *X*.

(3) $\mathcal{H}^{-1}(A)$ is the skyscraper sheaf $H^1(C) \otimes \delta_{\{\kappa\}}$ concentrated in $\kappa \in X$.

and the support of this perverse sheaf A is a translate of $\kappa + C - C$ in X.

Torelli's theorem is an immediate consequence. We also show, that higher convolution products of δ_{Θ} and δ_{C} essentially are perverse sheaves on *X* (i.e. they are perverse up to translates of constant sheaves on *X*).