

POD for Parametric PDEs and for Optimality Systems

M. Kahlbacher, K. Kunisch, H. Müller and S. Volkwein

Institute for Mathematics and Scientific Computing University of Graz, Austria

DMV-Jahrestagung 2006, Bonn

University of Graz

POD for Parametric PDEs and for Optimality Systems

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Motivation 1: Parameter identification

Model equations:

$$-\operatorname{div}(c\nabla u) + \beta \cdot \nabla u + au = f \qquad \text{in } \Omega \subset \mathbb{R}^d$$
(*)
$$c \frac{\partial u}{\partial n} + qu = g_N \qquad \text{on } \Gamma_N \subset \Gamma$$

$$u = g_D \qquad \text{on } \Gamma_D = \Gamma \setminus \Gamma_N$$

- Problem: estimate parameters (e.g., β or a) in (*) from given (perturbed) measurements u_d for the solution u on (parts of) Γ
- ▶ Mathematical formulation: (∞-dim.) optimization problem

$$\min \int_{\Gamma} \alpha |u - u_d|^2 \, \mathrm{d}s + \kappa \, \|p\|^2 \quad \text{s.t.} \quad (p, u) \text{ solves } (*) \text{ and } p \in P_{\mathrm{ad}}$$

Numerical strategy: combine optimization methods with fast (local) rate of convergence and POD model reduction for the PDEs

s.t. — subject to

S. Volkwein

Image: A math a math

Motivation 2: Optimal control of time-dependent problems

Model problem:

$$\min \frac{1}{2} \int_{\Omega} |y(T) - y_T|^2 dx + \frac{\kappa}{2} \int_0^T \int_{\Gamma} |u|^2 dx dt$$

s.t.
$$\begin{cases} y_t - \Delta y + f(y) &= 0\\ y|_{\Gamma} &= u\\ y(0) &= y_{\circ} \end{cases}$$

Adjoint system:

$$-p_t - \Delta p + f'(y)^* p = 0, \quad p|_{\Gamma} = 0, \quad p(T) = y_T - y(T)$$

Optimizer: second-order algorithms like SQP or Newton methods

► Challenge: large-scale ↔ fast/real-time optimizer

・ロト ・回ト ・ヨト

POD for Parametric PDEs and for Optimality Systems

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Motivation 3: Closed-loop control for time-dependent PDEs

Open-loop control:

 $\begin{array}{c|c} \text{input } u(t) \rightarrow & \begin{array}{c} \dot{y}(t) = f(t,y(t),u(t)) \\ y(0) = y_o \in \mathbb{R}^{\ell} \\ (\text{after spatial discretization}) \end{array} \rightarrow \begin{array}{c} \text{output } y(t) \end{array}$

• Closed-loop control: determine \mathcal{F} with

$$u(t) = \mathcal{F}(t, y(t))$$
 (feedback law)

- Linear case: LQR and LQG design
- ▶ Nonlinear case: Hamilton-Jacobi-Bellman equation

$$v_t(t, y_\circ) + H(v_y(t, y_\circ), y_\circ) = 0$$
 in $(0, T) \times \mathbb{R}^\ell$

► Strategy: ℓ-dim. spatial approximation by POD model reduction

S. Volkwein

University of Graz

Outline of the talk

- POD in Hilbert spaces
- Parameter estimation in elliptic systems
- POD for optimality systems (OS-POD)
- Conclusions

・ロト ・回ト ・ヨト

POD in Hilbert spaces

- Topology: Hilbert space X with inner product $\langle \cdot , \cdot \rangle$
- Snapshots: $y_1, \ldots, y_n \in X$
- ▶ Snapshot ensemble: $\mathcal{V} = \text{span} \{y_1, \ldots, y_n\} \subset X$, $d = \dim \mathcal{V} \leq n$
- ▶ POD basis of any rank $\ell \in \{1, ..., d\}$: with weights $\alpha_j \ge 0$

$$\min \sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \sum_{i=1}^{\ell} \langle y_{j}, \psi_{i} \rangle \psi_{i} \right\|^{2} \quad \text{s.t.} \quad \langle \psi_{i}, \psi_{j} \rangle = \delta_{ij}$$

Constrained optimization:

min
$$J(\psi_1, \dots, \psi_\ell)$$
 s.t. $\langle \psi_i, \psi_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

s.t. - subject to

S. Volkwein

University of Graz

・ロト ・日下・ ・日下

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Optimality conditions and computation of POD basis

• EVP for linear, symmetric \mathcal{R}^n in X:

$$\mathcal{R}^{n}u_{i} = \sum_{j=1}^{n} \alpha_{j} \langle u_{i}, y_{j} \rangle y_{j} = \lambda_{i}u_{i}$$

and set $\psi_i = u_i$

• EVP for linear, symmetric $\mathcal{K}^n = ((\langle y_j, y_i \rangle))$ in \mathbb{R}^n :

$$\mathcal{K}^n \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

and set $\psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j (v_i)_j y_j$ (methods of snapshots)

► Error for the POD basis of rank *l*:

$$\sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \sum_{i=1}^{\ell} \langle y_{j}, \psi_{i} \rangle \psi_{i} \right\|^{2} = \sum_{i=\ell+1}^{d} \lambda_{i}$$

University of Graz

メロト メポト メヨト メヨ

S. Volkwein

Properties of the POD basis

Uncorrelated POD coefficients:

$$\sum_{j=1}^{n} \alpha_{j} \langle \mathbf{y}_{j}, \psi_{i} \rangle \langle \mathbf{y}_{j}, \psi_{k} \rangle = \delta_{ik} \lambda_{i}$$

Optimality of the POD basis:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} \alpha_{j} |\langle y_{j}, \psi_{i} \rangle|^{2} \geq \sum_{i=1}^{\ell} \sum_{j=1}^{n} \alpha_{j} |\langle y_{j}, \chi_{i} \rangle|^{2}$$

where $\{\chi_i\}_{i=1}^{\ell}$ orthonormal in X

University of Graz

▲□▶ ▲圖▶ ▲厘▶ ▲

POD for Parametric PDEs and for Optimality Systems

POD for λ - ω systems [Müller/V.]

► PDEs:
$$s = u^2 + v^2$$
, $\lambda(s) = 1 - s$, $\omega(s) = -\beta s$
 $\begin{pmatrix} u_t \\ v_t \end{pmatrix} = \begin{pmatrix} \lambda(s) & -\omega(s) \\ \omega(s) & \lambda(s) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} \sigma \Delta u \\ \sigma \Delta v \end{pmatrix}$

Homogeneous boundary conditions:

$$u = v = 0$$
 or $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$

► Initial conditions: $u_{\circ}(x_1, x_2) = x_2 - 0.5$, $v_{\circ}(x_1, x_2) = (x_1 - 0.5)/2$

S. Volkwein POD for Parametric PDEs and for Optimality Systems

University of Graz

Image: A math the second se

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

POD basis for λ - ω systems

• Offsets:
$$\bar{u}(x) = \frac{1}{n} \sum_{j=1}^{n} u(t_j, x)$$
 or $\bar{u} \equiv 0$

► Snapshots: $\hat{u}_j(x) = u(t_j, x) - \bar{u}(x)$ for $1 \le j \le n$

• POD eigenvalue problem: $X = L^2(\Omega)$

$$\mathcal{K}v_i = \lambda v_i, \ 1 \le i \le \ell, \quad \text{with } \mathcal{K}_{ij} = \int_{\Omega} \hat{u}_j(x) \hat{u}_i(x) \, \mathrm{d}x$$

▶ POD basis computation: $\psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j(\mathbf{v}_i)_j \hat{u}_j$

S. Volkwein

University of Graz

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

ROM for $\lambda\text{-}\omega$ systems

POD Galerkin ansatz:

$$u_\ell(t,x)=ar{u}(x)+\sum_{j=1}^\ell u_\ell^j(t)\psi_j(x),\quad v_\ell(t,x)=ar{v}(x)+\sum_{j=1}^\ell v_\ell^j(t)\phi_j(x)$$

- Reduced-order model (ROM):
 - insert ansatz into PDEs
 - multiply by POD basis functions ψ_i respectively ϕ_i

100

integrate over Ω

relative error of u for B=1.5

・ロト ・日下・ ・ ヨト

University of Graz

S. Volkwein

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Relative POD errors for $\lambda\text{-}\omega$ systems

• Offsets:
$$u_{\mathrm{m}}(x) = \frac{1}{n} \sum_{j=1}^{n} u(t_j, x)$$
 or $\bar{u} \equiv 0$

Relative POD errors:

	$\bar{u} = 0$	$\bar{u} = u_{\mathrm{m}}$		$\bar{u} = 0$	$\bar{u} = u_{\mathrm{m}}$
$\ell = 10$	0.005890	0.005945	$\ell = 40$	0.577442	0.460188
$\ell = 15$	0.000350	0.000335	$\ell = 45$	0.898613	0.297619
$\ell = 50$	0.000009	0.000009	$\ell = 50$	0.071035	0.001774

$$E_{\rm rel}(u) = \frac{\sum\limits_{j=1}^{n} \alpha_j \|u_{\ell}(t_j) - u(t_j)\|_{L^2(\Omega)}^2}{\sum\limits_{j=1}^{n} \alpha_j \|u(t_j)\|_{L^2(\Omega)}^2} \text{ for } \beta = 1.5 \text{ (left) and } \beta = 2 \text{ (right)}$$

University of Graz

э

<ロ> < □> < □> < □> < □> <

S. Volkwein

Continuous POD in Hilbert spaces [Henri/Yvon, Kunisch/V., ...]

- Snapshots: $y(\mu) \in X$ for all $\mu \in \mathcal{I}$
- ▶ Snapshot ensemble: $\mathcal{V} = \{y(\mu) \mid \mu \in \mathcal{I}\} \subset X, d = \dim \mathcal{V} \le \infty$
- POD basis of rank $\ell < d$:

$$\min \int_{\mathcal{I}} \left\| y(\mu) - \sum_{i=1}^{\ell} \left\langle y(\mu), \psi_i \right\rangle \psi_i \right\|^2 \mathrm{d}\mu \quad \text{s.t.} \quad \left\langle \psi_i, \psi_j \right\rangle = \delta_{ij}$$

• EVP for linear, symmetric \mathcal{R} in X:

$$\mathcal{R}\psi_i^\infty = \int_\mathcal{I} \langle \psi_i^\infty, \mathbf{y}(\mu)
angle \, \mathbf{y}(\mu) \, \mathrm{d}\mu = \lambda_i^\infty \psi_i^\infty$$

• Error for the POD basis of rank ℓ :

$$\int_{\mathcal{I}} \left\| y(\mu) - \sum_{i=1}^{\ell} \langle y(\mu), \psi_i^{\infty} \rangle, \psi_i^{\infty} \right\|^2 \mathrm{d}\mu = \sum_{i=\ell+1}^{\infty} \lambda_i^{\infty}$$

University of Graz

メロト メヨト メヨト メ

S. Volkwein

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Relationship between 'discrete' and continuous POD

• Operators \mathcal{R}^n and \mathcal{R} :

$$\mathcal{R}^{n}\psi = \sum_{j=1}^{n} \alpha_{j} \langle \psi, y(\mu_{j}) \rangle y(\mu_{j}) \quad \text{for } \psi \in X = L^{2}(\Omega)$$
$$\mathcal{R}\psi = \int_{\mathcal{I}} \langle \psi, y(\mu) \rangle y(\mu) \, \mathrm{d}\mu \quad \text{for } \psi \in X = L^{2}(\Omega)$$

- Operator convergence of $\mathcal{R}^n \mathcal{R}$: y smooth and appropriate α_j 's
- ▶ Perturbation theory [Kato]: $(\lambda_i, \psi_i) \xrightarrow{n \to \infty} (\lambda_i^{\infty}, \psi_i^{\infty})$ for $1 \le i \le \ell$
- Choice of the weights α_j ?: ensure convergence $\mathcal{R}^n \xrightarrow{n \to \infty} \mathcal{R}$

メロト メロト メヨト メ

POD for Parametric PDEs and for Optimality Systems

Parameter estimation [Kahlbacher/V.]

• Model equations:
$$\beta(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{aligned} -2\Delta u + \beta \cdot \nabla u + au &= 1 & \text{in } \Omega = (0,1) \times (0,1) \\ 2 \frac{\partial u}{\partial n} + \frac{3}{2} u &= -1 & \text{on } \Gamma \end{aligned}$$

▶ Snapshots: (FE) solutions $\{u_j\}_{j=1}^{102}$ for $a_j = -51.5 + j$

▶ POD basis of rank *ℓ*:

$$(\mathbf{P}^{\ell}) \qquad \min \sum_{j=1}^{102} \left\| u_j - \sum_{i=1}^{\ell} \left\langle u_j, \psi_i \right\rangle \psi_i \right\| \quad \text{s.t.} \quad \left\langle \psi_i, \psi_j \right\rangle = \delta_{ij}$$

with $\langle \varphi, \phi \rangle = \int_{\Omega} \varphi \phi \, \mathrm{d}x$ and $\|\varphi\| = \sqrt{\langle \varphi, \varphi \rangle}$

• Solution to (\mathbf{P}^{ℓ}): correlation matrix $K_{ij} = \langle u_i, u_j \rangle$

$$\mathcal{K}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_\ell, \quad \psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^{102} (\mathbf{v}_i)_j u_j$$

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Reduced-order modelling (ROM)

- Ansatz: $u^{\ell} = \sum_{i \leq \ell} u_i^{\ell} \psi_i$ and Galerkin projection
- Error estimate: $\int \|u^{\ell}(a) u(a)\|^2 da \sim \sum_{i>\ell} \lambda_i$
- Exponential decay of the eigenvalues: $\lambda_i = \lambda_1 e^{-\eta(i-1)}$
- Experimental order of decay (EOD) [Hinze/V.]:

$$\textit{EOD} := \tfrac{1}{\ell_{\max}} \sum_{\ell=1}^{\ell_{\max}} \textit{Q}(\ell) \quad \text{with} \quad \textit{Q}(\ell) = \ln \tfrac{\int \|u^\ell(a) - u(a)\|^2 \, \mathrm{d}a}{\int \|u^{\ell+1}(a) - u(a)\|^2 \, \mathrm{d}a} \sim \eta$$

S. Volkwein

University of Graz

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Parameter identification

• Model equations: $g(x) = x_1$

(*)
$$\begin{array}{c} -\frac{3}{4}\Delta u + \left(\begin{array}{c} 1\\1\end{array}\right) \cdot \nabla u + au = g \quad \text{ in } \Omega = (0,1) \times (0,1) \\ \\ \frac{3}{4}\frac{\partial u}{\partial n} + \frac{3}{2}u = -1 \quad \text{ on } \Gamma \end{array}$$

- ▶ Data: choose $a_{id} \ge 0$ and compute (FE) solution $u(a_{id})$ to (*)
- ▶ Reconstruction: estimate $a \ge 0$ from $u_d = (1 + \varepsilon \delta)u(a_{id})|_{\Gamma}$ with random $|\varepsilon| \le 1$ and factor $\delta = 5\%$
- Constrained optimization:

min
$$J(a, u) = \int_{\Gamma} \alpha |u - u_d|^2 ds + \kappa |a|^2$$
 s.t. (a, u) solves (*) and $a \ge 0$

Relaxation of the inequality:

$$\min J_{\lambda}^{\varrho}(a, u) = J(a, u) + \frac{1}{\varrho} \max \left\{ 0, \lambda + \varrho(0 - a) \right\}^2 \text{ s.t. } (a, u) \text{ solves } (*)$$

メロト メヨト メヨト メ

POD for Parametric PDEs and for Optimality Systems

Global convergent optimization method

- Outer loop: augmented Lagrangian method \rightarrow control of ϱ^k and λ^k
- ▶ Inner loop: globalized SQP algorithm with fixed (ϱ^k, λ^k) for

$$\min J_{\lambda^k}^{\varrho^k}(a, u) \quad \text{s.t.} \quad \left\{ \begin{array}{rrr} -\frac{3}{4}\Delta u + \left(\begin{array}{c} 1\\1\end{array}\right) \cdot \nabla u + au &=g & \text{in } \Omega\\ & \frac{3}{4}\frac{\partial u}{\partial n} + \frac{3}{2}u &=-1 & \text{on } \Gamma \end{array} \right.$$

▶ Numerical results: $\alpha = 5000$, $\kappa = 0.0005$, $a_{id} = 25$, $\ell = 7$

relative errors:

$$\frac{|u^{\ell}-u(a_{\mathrm{id}})||}{||u(a_{\mathrm{id}})||} \approx 1.87 \cdot 10^{-5}$$
$$\frac{a^{\ell}-a_{\mathrm{id}}|}{|a_{\mathrm{id}}|} \approx 6 \cdot 10^{-3}$$

University of Graz

POD for Parametric PDEs and for Optimality Systems

Minimize:

$$J(y, u) = \frac{\beta}{2} \int_0^T \|y(t) - z(t)\|_H^2 dt + \frac{1}{2} \int_0^T u(t)^T \mathbf{R} u(t) dt$$

s.t. (e.g., Navier-Stokes)

$$rac{\mathrm{d}}{\mathrm{d}t} y(t) + \mathcal{A}y(t) + \mathcal{N}(y(t)) = \sum_{k=1}^m u_k(t) b_k ext{ in } [0,T] ext{ and } y(0) = y_\circ$$

- ▶ *H*, *V* Hilbert spaces, $V \hookrightarrow H = H' \hookrightarrow V'$ (e.g., $H = L^2$, $V = H^1$)
- $\mathbf{R} \in \mathbb{R}^{m \times m}$ with $\mathbf{R} \succ 0$, $z \in L^2(0, T; H)$, $\beta > 0$
- ▶ a : $V \times V \to \mathbb{R}$ bounded, symmetric, coercive $\mathcal{A} : V \to V'$ with $\langle \mathcal{A}\phi, \varphi \rangle_{V', V} = a(\phi, \varphi)$ for all $\phi, \varphi \in V$

$$\blacktriangleright \ \mathcal{N}: V \to V', \ u \in L^2(0, T; \mathbb{R}^m), \ y_{\circ} \in H, \ b_k \in H$$

S. Volkwein

University of Graz

・ロト ・日下・ ・ ヨト・

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

POD modelling

- ▶ Choose snapshots, e.g., $\mathcal{V} = \{y(t) \mid t \in [0, T]\}$ for fixed *u*
- Compute POD basis $\psi_1, \ldots, \psi_\ell$
- Galerkin ansatz: $x(t) = \sum_{i=1}^{\ell} x_i(t)\psi_i$
- Model reduction \Rightarrow low dimension
- Problems:
 - Quality of the basis for unknown optimal control?
 - Can we avoid the computation of y for various inputs?
 - Can we avoid the computation of p for various observations?
- Compare: Balanced truncation for

$$\dot{x}(t) = Ax(t) + Bu(t), t > 0$$
 and $x(0) = x_0$
 $y(t) = Cx(t), t > 0$

< □ > < □ > < □ > < □ >

University of Graz

Optimality System-POD - 1

Minimize for fixed $\ell > 0$

$$J^{\ell}(x,\psi,u) = \frac{\beta}{2} \int_0^T x(t)^T \left(\mathbf{E}(\psi) x(t) - 2z^{\ell}(t,\psi) \right) \mathrm{d}t + \frac{1}{2} \int_0^T u(t)^T \mathbf{R} u(t) \mathrm{d}t$$

s.t.

S. Volkwein

$$\blacktriangleright \mathbf{E}(\psi)\dot{x}(t) + \mathbf{A}(\psi)x(t) + \mathbf{N}(x(t),\psi) = \mathbf{B}(\psi)u(t) \ \forall t, \ \mathbf{E}(\psi)x(0) = x_{\circ}$$

$$\mathbf{E}_{ij} = \langle \psi_j, \psi_i \rangle_H, \, \mathbf{A}_{ij} = \mathbf{a}(\psi_j, \psi_i), \, \mathbf{B}_{ij} = \langle b_j, \psi_i \rangle_H, \, \mathbf{N}_i = \left\langle \mathcal{N}\left(\sum_{j=1}^{\ell} x_j \psi_j\right), \psi_i \right\rangle, \, z_i^{\ell} = \langle z(t), \psi_i \rangle_H$$

≣ ⊧ ≣ •ીલ University of Graz

<ロ> <同> <同> < 同> < 同> < 目

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Optimality System-POD -1

Minimize for fixed $\ell > 0$

$$J^{\ell}(x,\psi,u) = \frac{\beta}{2} \int_0^T x(t)^T \left(\mathbf{E}(\psi) x(t) - 2z^{\ell}(t,\psi) \right) \mathrm{d}t + \frac{1}{2} \int_0^T u(t)^T \mathbf{R} u(t) \mathrm{d}t$$

s.t.

•
$$\mathbf{E}(\psi)\dot{x}(t) + \mathbf{A}(\psi)x(t) + \mathbf{N}(x(t),\psi) = \mathbf{B}(\psi)u(t) \ \forall t, \ \mathbf{E}(\psi)x(0) = x_{\circ}$$

• $\dot{y}(t) + \mathcal{A}y(t) + \mathcal{N}(y(t)) = (\mathcal{B}u)(t) = \sum_{k=1}^{m} u_{k}(t)b_{k} \ \forall t, \ y(0) = y_{\circ}$

$$\blacktriangleright \ \mathcal{R}(y)\psi_i = \int_0 \ \langle y(t), \psi_i \rangle y(t) \, \mathrm{d}t = \lambda_i \psi_i, \ \langle \psi_i, \psi_j \rangle = \delta_{ij}$$

$$\mathbf{E}_{ij} = \langle \psi_j, \psi_i \rangle_{\mathcal{H}}, \mathbf{A}_{ij} = \mathbf{a}(\psi_j, \psi_i), \mathbf{B}_{ij} = \langle b_j, \psi_i \rangle_{\mathcal{H}}, \mathbf{N}_i = \left\langle \mathcal{N}\Big(\sum_{j=1}^{\ell} x_j \psi_j\Big), \psi_i \right\rangle, z_i^{\ell} = \langle z(t), \psi_i \rangle_{\mathcal{H}}$$

S. Volkwein

POD for Parametric PDEs and for Optimality Systems

University of Graz

・ロト ・日下・ ・ ヨト・

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

OS-POD - 2

S. Volkwein

Constraints:

$$\begin{split} \mathbf{E}(\psi)\dot{x}(t) + \mathbf{A}(\psi)x(t) + \mathbf{N}(x(t),\psi) &= \mathbf{B}(\psi)u(t) \ \forall t, \ \mathbf{E}(\psi)x(0) = x_{\circ} \\ \dot{y}(t) + \mathcal{A}y(t) + \mathcal{N}(y(t)) &= \sum_{k=1}^{m} u_{k}(t)b_{k} \ \forall t, \ y(0) = y_{\circ} \\ \mathcal{R}(y)\psi_{i} &= \lambda_{i}\psi_{i}, \ \langle\psi_{i},\psi_{j}\rangle = \delta_{ij} \end{split}$$

- State variables: $w = (x, \psi_1, \dots, \psi_\ell, y, \lambda_1, \dots, \lambda_\ell)$
- ▶ POD basis: $\psi_i = \psi_i(u)$ computed from trajectory y = y(u)
- Existence of optimal solutions under assumptions for $\mathcal N$ and $\mathcal A$
- Existence of Lagrange multipliers provided $\lambda_1 > \ldots > \lambda_\ell > 0$

・ロト ・日下・ ・ ヨト

Optimality system for OS-POD

- Optimal solution: $w = (x, \psi_1, \dots, \psi_\ell, y, \lambda_1, \dots, \lambda_\ell)$
- ▶ Dual equation for x (POD) dynamics: $q : [0, T] \rightarrow \mathbb{R}^{\ell}$, q(T) = 0

$$-\mathsf{E}(\psi)\dot{q}(t) + \left(\mathsf{A}(\psi) + \mathsf{N}_{\mathsf{x}}(\mathsf{x}(t),\psi)^{\mathsf{T}}\right)q(t) = \beta\left(z^{\ell}(t,\psi) - \mathsf{E}(\psi)\mathsf{x}(t)\right)$$

▶ Dual equations for y dynamics: $p : [0, T] \rightarrow V$, p(T) = 0

$$-\dot{p}(t) + (\mathcal{A} + \mathcal{N}'(y(t))^*) p(t) = \sum_{i=1}^{\ell} \left(\langle y(t), \mu_i \rangle \psi_i + \langle y(t), \psi_i \rangle \mu_i \right)$$

- Optimality condition: $\mathbf{R}u(t) = \mathbf{B}(\psi)^T q(t) + \mathcal{B}^* p(t)$
- ▶ Right-hand side: $(\mathcal{R} \lambda_i \mathcal{I})\mu_i = \mathcal{G}_i(w) \in \ker (\mathcal{R} \lambda_i \mathcal{I})^{\perp}$, $1 \leq i \leq \ell$

POD for Parametric PDEs and for Optimality Systems

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Boundary control of the Burgers' equation

Consider

$$\min J(y, u) = \frac{1}{2} \int_0^T \left(\int_{\Omega} |y - z|^2 \, dx + \beta \, \left(|u(t)|^2 + |v(t)|^2 \right) \right) dt$$

s.t.

$$\begin{array}{ll} y_t - \nu y_{xx} + yy_x &= f & \text{ in } Q = (0, T) \times \Omega \\ \nu y_x(\cdot, 0) &= u & \text{ in } (0, T) \\ \nu y_x(\cdot, 1) + \sigma y(\cdot, 1) &= v & \text{ in } (0, T) \\ y(0, \cdot) &= y_0 & \text{ in } \Omega = (0, 1) \end{array}$$

$$T = 1, \beta = 0.001, \nu = 0.5, f(t, x) = e^{-3t} \sin(2\pi x), \sigma = 0.1, y_0 = \sin(2\pi x)$$

University of Graz

S. Volkwein

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Numerical strategy: Update of POD basis

Idea: combine fast POD solver and OS-POD information

- 1) Choose u^0 and set n = 0
- 2) Determine PODs $\{\psi_i^n\}_{i=1}^\ell$ for $y^n = y^n(u^n)$
- 3) Solve inexactly $[\tilde{u}^n, q^n] = SQP^{\ell}(m)$ (POD solver)
- 4) Solve dual quation for p^n (OS-POD information)
- 5) Compute $u^{n+1} = \tilde{u}^n \tau \left(\mathbf{R} \tilde{u}^n(t) \mathbf{B}(\psi^n)^T q^n(t) \mathcal{B}^\star p^n(t) \right), \ \tau > 0$
- 6) Set n = n + 1 and go back to 2) if $n \le n_{\max}$

Stopping criterium: OS-POD gradient 'small', POD solver 'exact'

 $SQP^{\ell}(m)$: m SQP steps for the control problem with fixed POD basis

Numerical test (figures)

S. Volkwein

University of Graz

S. Volkwein

Numerical test (tables)

Outline

	J(y, u, v)
Solve for $u = v = 0$	0.22134
OS-POD	0.03813
FE-SQP	0.03765

Steps	CPU time		
Generate snapshots	0.62 s		
Determine POD	0.09 s		
Determine ROM	0.03 s		
SQP solver	14.16 s		
Compute μ_i 's	2.07 s		
Dual FE solver	0.71 s		
Backtracking in 5)	0.32 s		

	n = 0	<i>n</i> = 4	with FE controls
$\lambda_1/\mathrm{tr}\left(\mathcal{K}_h\right)$	0.97187	0.87661	0.88092
$\lambda_2/\mathrm{tr}(\mathcal{K}_h)$	0.02209	0.08051	0.08734
$\lambda_3/\mathrm{tr}(\mathcal{K}_h)$	0.00579	0.02736	0.02744
$\lambda_4/\mathrm{tr}(\mathcal{K}_h)$	0.00025	0.00191	0.00292

≣। ≡ •००० University of Graz

Motivation	Outline	POD in Hilbert spaces	Parameter estimation	OS-POD	Conclusions

Conclusions

- ► POD in Hilbert spaces: choice of weights and norms
 - \rightarrow convergence estimates [Kunisch/V., Hinze/V., Kahlbacher/V.]
- Parameter estimation in elliptic systems
 - \rightarrow Helmholtz equation [ACC Graz]
- ▶ OS-POD: update of the PODs within optimization
 - \rightarrow optimal POD basis at optimal solution
 - \rightarrow more complex problems

Preprints:

http://www.uni-graz.at/imawww/reports/index.html

► POD scriptum:

http://www.uni-graz.at/imawww/volkwein/POD.pdf