On optimal control problems with mixed control-state constraints

Arnd Rösch

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz Austrian Academy of Sciences

Bonn, September 18-22, 2006

Outline

- Motivation
- Lavrentiev regularization
 - Regularization error
 - Stability results
 - Numerical tests
- Oiscretization

Cooperation

This talk is a joint work with

- Svetlana Cherednichenko
- Klaus Krumbiegel

and is supported by the FWF-project P18090-N12.

Contents

- Motivation
 - Lavrentiev regularization
 - Regularization error
 - Stability results
 - Numerical tests
- Oiscretization

A state constrained optimal control problem

Objective

$$\min J(u) = F(y, u) = \frac{1}{2} \|y - y_d\|_{L^2(\Omega)}^2 + \frac{\nu}{2} \|u\|_{L^2(\Omega)}^2$$

State equation

$$\begin{array}{rcl} Ay & = & u & \text{in } \Omega \\ y & = & 0 & \text{on } \Gamma \end{array}$$

Constraints

$$y_c \leq y$$
 a.e. in $\Omega' \subset \Omega$
 $0 \leq u \leq b$ a.e. in Ω

Lavrentiev regularization

Assume that $\bar{y} = y_c$ holds on a subdomain. \rightarrow The optimal control is obtained by twice differentiating the data:

$$Ay_c = u$$
.

Consequently, we have

- → some properties of ill-posed problems
- → in particular high condition numbers after discretization

Moreover, the Lagrange multiplier μ associated to the state constraints are only Borel measures (Dirac measures are possible).

One possible way out: → Lavrentiev regularization

Lavrentiev regularization

$$\pm \varepsilon u + y \geq y_c$$

Contents

- Motivation
- Lavrentiev regularization
 - Regularization error
 - Stability results
 - Numerical tests
- Oiscretization

Lavrentiev regularization

We use a Lavrentiev type regularization of the state constraints.

Regularized state constraints

$$\pm \varepsilon u + y \geq y_c$$

Known results: Existence of regular Lagrange multipliers in several cases:

- linear quadratic problems → Tröltzsch (2004),
- semilinear problems → Rösch and Tröltzsch (2005, 2006).

Optimal controls are Lipschitz continuous. Convergence of the optimal controls \bar{u}_{ε} can be shown for $\varepsilon \downarrow 0$ (Meyer, Rösch and Tröltzsch (2004)). Next, we will discuss the approach via

$$\varepsilon u + y \geq y_c$$
.

Regularity condition - Existence of optimal solutions

We assume the existence of an "inner point":

Regularity condition - existence of an inner point

$$\exists \hat{u} \in L^2(\Omega): 0 \leq \hat{u} \leq b \quad \text{and} \quad \hat{y} \geq y_c + \tau, \quad \tau > 0$$

Existence of optimal solutions

Lemma: The unregularized problem admits a unique solution \bar{u} . Moreover, the regularized problems admit unique solutions \bar{u}_{ε} .

Remark

An additional smallness condition for arepsilon is needed to ensure this result in the case

$$-\varepsilon u + y \geq y_c$$
.

Admissible control sets and optimality conditions

We define the following sets:

Admissible control sets

$$\begin{array}{lll} U_{ad} & := & \left\{ u \in L^2(\Omega) : \ 0 \leq u \leq b, \ y_c \leq y, \right\} \\ U^{\varepsilon}_{ad} & := & \left\{ u \in L^2(\Omega) : \ 0 \leq u \leq b, \ y_c \leq y + \varepsilon u \right\} \end{array}$$

Here, y denotes always the associated state to u.

Optimality conditions

$$\begin{array}{ccc} \left(\nu \bar{u} + \bar{p}, u - \bar{u}\right) & \geq & 0 & \text{for all } u \in U_{ad} \\ \left(\nu \bar{u}_{\varepsilon} + \bar{p}_{\varepsilon}, u - \bar{u}_{\varepsilon}\right) & \geq & 0 & \text{for all } u \in U_{ad}^{\varepsilon} \end{array}$$

where the adjoint states \bar{p} and \bar{p}_{ε} are defined via an adjoint equation:

Adjoint equation

$$A^*p = y - y_d \text{ in } \Omega$$

 $p = 0 \text{ on } \partial \Omega$

Construction of test functions

Construction of a test function for the first variational inequality

Lemma: The control $u_{\delta}:=(1-\delta)\bar{u}_{\varepsilon}+\delta\hat{u}$ is feasible for (P) for $\delta\in[\delta_{\varepsilon},1]$ with

$$\delta_{\varepsilon} = \frac{\varepsilon b}{\tau + \varepsilon b}.$$

The assertion is easily obtained using the specific properties of the inner point \hat{u} .

Construction of a test function for the second variational inequality

Lemma: \bar{u} belongs to U_{ad}^{ε} for arbitrary $\varepsilon > 0$.

The assertion is true because of

$$\varepsilon \bar{u} + \bar{y} \geq \bar{y} \geq y_c$$
.

Error estimates

Adding the two variational inequalities with our specific test functions, we obtain

$$\nu\|\bar{u}-\bar{u}_{\varepsilon}\|_{L^{2}(\Omega)}^{2}+\|\bar{y}-\bar{y}_{\varepsilon}\|_{L^{2}(\Omega)}^{2}\leq (\nu\bar{u}+\bar{p},\ u_{\delta}-\bar{u}_{\varepsilon}).$$

Moreover, we have

$$||u_{\delta} - \overline{u}_{\varepsilon}||_{L^{2}(\Omega)} = \delta ||\hat{u} - \overline{u}_{\varepsilon}||_{L^{2}(\Omega)} \leq \delta b |\Omega|^{\frac{1}{2}}.$$

Setting $\delta = \delta_{arepsilon}$ we end up with

Regularization error

$$u \| \bar{u}_{\varepsilon} - \bar{u} \|_{L^{2}(\Omega)}^{2} + \| \bar{y}_{\varepsilon} - \bar{y} \|_{L^{2}(\Omega)}^{2} \le c \varepsilon.$$

Stability of regularized solutions

Assumption: The data y_d and y_c are perturbed:

Noisy data

$$||y_d - y_d^{\sigma}||_{L^2(\Omega)} \leq \sigma_d$$

$$||y_c - y_c^{\sigma}||_{L^{\infty}(\Omega)} \leq \sigma_c$$

We modify the regularity condition

Regularity condition - existence of an inner point

$$\exists \hat{u} \in L^2(\Omega): 0 \le \hat{u} \le b \text{ and } \hat{y} \ge y_c + \tau, \quad \tau - \sigma_c = \tau' > 0.$$

That means that the safety parameter τ is larger than the noise level δ . We denote by $\bar{u}^{\sigma}_{\varepsilon}$ the solution of the regularized problem with noisy data. Our goal is to estimate the distance $\|\bar{u}^{\sigma}_{\varepsilon} - \bar{u}\|$ to the solution of the unregularized problem with exact data.

Existence of optimal solutions and optimality system

Existence of optimal solutions

Lemma: The unregularized problem admits a unique solution \bar{u} . Moreover, the regularized problems admit unique solutions $\bar{u}^{\sigma}_{\varepsilon}$.

The assertion is true, since the modified regularity condition ensures the existence of a feasible point.

Optimality conditions

$$\begin{array}{ccc} (\nu \overline{u} + \overline{p}, u - \overline{u}) & \geq & 0 & \text{for all } u \in U_{ad} \\ (\nu \overline{u}_{\varepsilon}^{\sigma} + \overline{p}_{\varepsilon}^{\sigma}, u - \overline{u}_{\varepsilon}^{\sigma}) & \geq & 0 & \text{for all } u \in U_{ad}^{\varepsilon, \delta} \end{array}$$

The noisy data influence the adjoint equation:

Adjoint equation for the problem with noisy data

$$A^* p_{\varepsilon}^{\sigma} = y_{\varepsilon}^{\sigma} - y_{d}^{\sigma} \text{ in } \Omega$$
$$p_{\varepsilon}^{\sigma} = 0 \text{ on } \partial \Omega$$

Construction of test functions

The noisy data influence the construction of the test functions

Construction of test functions

Lemma: The control $u^{\sigma}_{\delta}:=(1-\delta)\bar{u}+\delta\hat{u}$ is feasible for $(P^{\sigma}_{\varepsilon})$ for $\delta\in[\delta^{\sigma}_{\varepsilon},1]$. Moreover, $u^{\sigma}_{\varrho}:=(1-\varrho)\bar{u}^{\sigma}_{\varepsilon}+\varrho\hat{u}$ is feasible for (P) for every ϱ in $[\varrho^{\sigma}_{\varepsilon},1]$.

The quantities $\delta^{\sigma}_{\varepsilon}$, $\varrho^{\sigma}_{\varepsilon}$ are given by

$$\delta_{\varepsilon}^{\sigma} = \frac{\sigma_{c}}{\sigma_{c} + \tau}, \quad \varrho_{\varepsilon}^{\sigma} = \frac{\varepsilon b + \sigma_{c}}{\varepsilon b + \sigma_{c} + \tau'}$$

Using these two test functions, we find the estimate

$$\begin{split} \nu \| \bar{u} - \bar{u}_{\varepsilon}^{\sigma} \|_{L^{2}(\Omega)}^{2} + \| \bar{y} - \bar{y}_{\varepsilon}^{\sigma} \|_{L^{2}(\Omega)}^{2} & \leq (\nu \bar{u} + \bar{p}, u_{\varrho}^{\sigma} - \bar{u}_{\varepsilon}^{\sigma}) \\ + (\bar{p}_{\varepsilon}^{\sigma} + \nu \bar{u}_{\varepsilon}^{\sigma}, u_{\delta}^{\sigma} - \bar{u}) \\ + (y_{d} - y_{d}^{\sigma}, \bar{y} - \bar{y}_{\varepsilon}^{\sigma}). \end{split}$$

Stability estimate

Estimating all terms, we find the stability estimate

Stability estimate

$$\nu \|\bar{u} - \bar{u}_{\varepsilon}^{\sigma}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \|\bar{y} - \bar{y}_{\varepsilon}^{\sigma}\|_{L^{2}(\Omega)}^{2} \le C_{1}\varepsilon + C_{2}\sigma_{c} + \frac{1}{2}\sigma_{d}^{2}.$$

The constants C_1 and C_2 can be expressed as follows

$$C_{1} = \frac{b^{2}}{\tau'} |\Omega|^{\frac{1}{2}} \cdot ||\nu \bar{u} + \bar{p}||_{L^{2}(\Omega)}$$

$$C_{2} = \frac{b}{\tau'} |\Omega|^{\frac{1}{2}} \cdot ||\nu \bar{u} + \bar{p}||_{L^{2}(\Omega)} + \frac{b}{\tau} |\Omega|^{\frac{1}{2}} \cdot ||\nu \bar{u}_{\varepsilon}^{\sigma} + \bar{p}_{\varepsilon}^{\sigma}||_{L^{2}(\Omega)}.$$

Using the inner point, it is easy to find a priori bounds for the expressions $\|\nu \bar{u} + \bar{p}\|_{L^2(\Omega)}$ and $\|\nu \bar{u}_{\varepsilon}^{\sigma} + \bar{p}_{\varepsilon}^{\sigma}\|_{L^2(\Omega)}$

Feasible solution

The control u_o^{σ} is feasible for (P) and fulfills the same error estimate.

Numerical test - dependence on ε

Numerical test - dependence on arepsilon

ε	$\ \bar{u}-u_h^{\varepsilon}\ _{L^2(\Omega)}$	$\frac{\ \bar{u}-u_h^{\varepsilon}\ _{L^2(\Omega)}}{\sqrt{\varepsilon}}$	$\ \bar{y}-y_h^{\varepsilon}\ _{L^2(\Omega)}$
$2^1 \cdot 10^{-2}$	2.2180 <i>e</i> + 0	15.684	9.7706 <i>e</i> – 2
$2^0 \cdot 10^{-2}$	1.5018e + 0	15.018	5.8289 <i>e</i> – 2
$2^{-1} \cdot 10^{-2}$	9.9099 <i>e</i> – 1	14.015	3.1875 <i>e</i> – 2
$2^{-2} \cdot 10^{-2}$	6.5758 <i>e</i> — 1	13.152	1.6745 <i>e</i> – 2
$2^{-3} \cdot 10^{-2}$	4.5411e - 1	12.844	9.1220 <i>e</i> – 3
$2^{-4} \cdot 10^{-2}$	3.5025 <i>e</i> – 1	14.010	5.9091 <i>e</i> – 3
$2^{-5} \cdot 10^{-2}$	3.1421 <i>e</i> – 1	17.774	4.8770 <i>e</i> – 3

arepsilon-dependency

Numerical Tests - solution for $\varepsilon = 0.005$

Numerical Tests - dependence on σ_c

Numerical Tests - dependence on σ_c

σ_{c}	$\ \bar{u}-u_h^{\varepsilon,\sigma_c}\ _{L^2(\Omega)}$	$\frac{\ \bar{u}-u_h^{\varepsilon,\sigma_c}\ _{L^2(\Omega)}}{\sqrt{\sigma_c}}$	$\ ar{y}-y_h^{arepsilon,\sigma_c}\ _{L^2(\Omega)}$
$2^3 \cdot 10^{-2}$	1.0011e + 0	3.5394	3.6082 <i>e</i> – 2
$2^2 \cdot 10^{-2}$	7.8281 <i>e</i> – 1	3.9140	1.7899 <i>e</i> – 2
$2^1 \cdot 10^{-2}$	6.0590 <i>e</i> — 1	4.2844	9.5663 <i>e</i> — 3
$2^0 \cdot 10^{-2}$	5.1377 <i>e</i> – 1	5.1377	6.0098 <i>e</i> – 3
$2^{-1} \cdot 10^{-2}$	4.1156 <i>e</i> – 1	5.8204	4.8575 <i>e</i> — 3
$2^{-2} \cdot 10^{-2}$	3.5701 <i>e</i> – 1	7.1401	4.6160 <i>e</i> – 3

 σ_c -dependency

Contents

- Motivation
- Lavrentiev regularization
 - Regularization error
 - Stability results
 - Numerical tests
- Oiscretization

Finite element discretization

We discuss a standard FE-discretization:

- Piecewise constant or piecewise linear controls
- Piecewise linear finite elements for the state

Remark

In the case of a semidiscretization (only discretization of the PDEs) we can apply the results concerning the stability presented before. The perturbation σ_c repesents now the discretization error

$$\|\bar{u}_{\varepsilon} - \bar{u}_{\varepsilon}^{h}\|_{L^{2}(\Omega)} \le c\sqrt{\sigma_{c}} \le ch|\ln h|^{1/2}$$

For full discretization we have to modify the estimation strategy.

The fully discretized problem

- We require the existence of an inner point for the undiscretized problem.
- Therefore, it is easy to construct a control u_h^{σ} which is close to the solution of the fully discretized problem u_h and feasible for the undiscretized problem.
- However, we need also a control u^{δ} which is close to the solution of the undiscretized problem \bar{u} and feasible for the discretized problem.
- Consequently, we need two ingredients:
 - ullet A piecewise constant (linear) control which is close to $ar{u}$
 - A piecewise constant (linear) inner point
- This problem is solved using the L^2 -projection of both points.

Basic properties and discretization error

FE-error

$$||Sf - S_h f||_{L^{\infty}(\Omega')} \leq ch^2 |\ln h| ||Sf||_{W^{2,\infty}(\Omega)}$$

$$||Sf - S_h f||_{L^{\infty}(\Omega')} \leq ch^2 (\ln h)^2 ||f||_{L^{\infty}(\Omega)}$$

The second inequality is essentially needed because of the piecewise constant controls. Estimating all terms, we end up with:

Discretization error

$$\|\bar{u}_{\varepsilon} - \bar{u}_{\varepsilon}^{h}\|_{L^{2}(\Omega)} \le ch|\ln h| + f(\varepsilon) \cdot h^{1/2}$$

Moreover, we have

$$f(\varepsilon) \to 0$$
 for $\varepsilon \to 0$.

Challenge for the future: Optimal tuning of h and ε

Summary

- Optimal control problems with pointwise state constraints can be regularized with a Lavrentiev type regularization.
- The regularization error can be estimated.
- The solutions are stable with respect to noisy data.
- It is possible to construct feasible approximations.
- Estimates for the discretization error are available.