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A state constrained optimal control problem

Objective
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Lavrentiev regularization

Assume that ¥y = y. holds on a subdomain. — The optimal control is
obtained by twice differentiating the data:

Aye = u.

Consequently, we have
— some properties of ill-posed problems

— in particular high condition numbers after discretization

Moreover, the Lagrange multiplier i associated to the state constraints
are only Borel measures (Dirac measures are possible).
One possible way out: — Lavrentiev regularization

Lavrentiev regularization

teu+y > yc
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Lavrentiev regularization

We use a Lavrentiev type regularization of the state constraints.

Regularized state constraints

+eu+y >y

Known results: Existence of reqular Lagrange multipliers in several cases:
@ linear quadratic problems — Troltzsch (2004),
@ semilinear problems — Rd&sch and Troltzsch (2005, 2006).

Optimal controls are Lipschitz continuous. Convergence of the optimal
controls T can be shown for € | 0 (Meyer, Résch and Tréltzsch (2004)).
Next, we will discuss the approach via

EUtYy > Ye.
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Regularity condition - Existence of optimal solutions

We assume the existence of an “inner point™:

Regularity condition - existence of an inner point

Juel?(Q): 0<u<b and y>y.+T1. T>0

| A

Existence of optimal solutions

Lemma: The unregularized problem admits a unique solution u.
Moreover, the regularized problems admit unique solutions .

An additional smallness condition for € is needed to ensure this result in
the case

—Eu+y >y
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Admissible control sets and optimality conditions

We define the following sets:

Admissible control sets

Uaag = {UEL2(Q):OSUSb:YCSYv}
e, = {uel?(2):0<u<b, y.<y+eu}

Here, y denotes always the associated state to u.

Optimality conditions

(vi+p,u—1u) > 0 forall u€ Usy
(VUe + Peu—Tg) > 0 forallue US,

where the adjoint states p and p, are defined via an adjoint equation:

Adjoint equation

Ap = y—vyg inQ
p = 0 on 012
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Construction of test functions

Construction of a test function for the first variational inequality

Lemma: The control us := (1 — §)Ue + 011 is feasible for (P) for
0 € [de, 1] with

eb
T+eb

e =

The assertion is easily obtained using the specific properties of the inner
point .

Construction of a test function for the second variational inequality
Lemma: & belongs to U%, for arbitrary € > 0.

The assertion is true because of

EU+Yy 2y 2 ye.
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Error estimates

Adding the two variational inequalities with our specific test functions, we
obtain

vllT — Tell o) + 17— FellFogoy < (VB + D, us — Te).
Moreover, we have

_ L 1
|us — Uell 12y = 6|0 — Tell12() < 6b[S2]2.

Setting 6 = §. we end up with

Regularization error

vl|Te — UlTs gy + I7e — Vo (o < ce.
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Stability of regularized solutions

Assumption: The data yy; and y. are perturbed:

Noisy data

Iya = ygllizey <
lye = ¥ellie(ey < oc

We modify the regularity condition

Regularity condition - existence of an inner point

I el’(R2): 0<u<b and §>y.+7, T—0.=1 >0

That means that the safety parameter T is larger than the noise level 0.
We denote by tg the solution of the regularized problem with noisy data.
Our goal is to estimate the distance ||uZ — #|| to the solution of the
unregularized problem with exact data.
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Existence of optimal solutions and optimality system

Existence of optimal solutions

Lemma: The unregularized problem admits a unique solution u.
Moreover, the regularized problems admit unique solutions .

The assertion is true, since the modified regularity condition ensures the
existence of a feasible point.

Optimality conditions

(vi+p,u—1u) > 0 forallué€ Usy
(vol +p . u—1ul) > 0 foralluEUggf

The noisy data influence the adjoint equation:

Adjoint equation for the problem with noisy data

On optimal control problems with mixed control-state constraints Bonn, September 18-22, 2006



Construction of test functions

The noisy data influence the construction of the test functions

Construction of test functions

Lemma: The control u§ := (1 —§)u + éi is feasible for (PZ) for
6 € [62,1]. Moreover, ug := (1 — g)uf + eli is feasible for (P) for every g
in [0Z,1].

The quantities 67, oZ are given by

o Oc o eb+ o,
0 =

o+ T Ce T ebto.+T

Using these two test functions, we find the estimate
— —o2 — —o2 — — —
olla = 8 2agoy + 17 = 7 W32y < (vT+ P, uf —T2)
+(pZ + vig, uf — )
+(Yd —¥q. ¥ — Vi)
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Stability estimate

Estimating all terms, we find the stability estimate

Stability estimate

_ 1 1
v|o— Ug||%2(9) + §||y - yg”é(rz) < Ge+ Goc+ 50'3-

The constants C; and G, can be expressed as follows
b?
G = 7\9\2' vt + Pl (o)
b 1 — — b L -0 | =0
G = ;|Q|2' vt + bl 12(0) + ;\9\2' lvig + ¢ |l 2()-

Using the inner point, it is easy to find a priori bounds for the expressions
v+ plli2(o) and |lvig + P2 12(0)

Feasible solution

The control ug is feasible for (P) and fulfills the same error estimate.
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Numerical test - dependence on €

O0 0.605 0.61 0.615 0.02 GO 0.605 0.61 0.615 0.02
£ €
error in the control error in the state
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Numerical test - dependence on €

[t — uillio o)

€ 1T — uilli2(o) e 1y = ¥illio (o)
21.1077 | 2.2180e+0 15.684 9.7706e — 2
20.107? | 1.5018e+0 15.018 5.8289¢e — 2
271.1072 | 9.9099¢ - 1 14.015 3.1875e — 2
272.107?% | 6.5758e 1 13.152 1.6745e — 2
273.1072 | 4541le—1 12.844 9.1220e — 3
2=4.1072 | 3.5025e—1 14.010 5.9091e — 3
27°.1072 | 3.1421e—1 17.774 4.8770e — 3

e-dependency
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Numerical Tests - dependence on o,

0'30 0.62 0.64 0.66 0.08 0O 0.62 0.64 0.66 0.08
[e) [e)
Cc [
error in the control error in the state
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Numerical Tests - dependence on o,

o |8 g | TG %2
\V0oc
23.1077 1.0011e+0 3.5394 3.6082¢ — 2
22.1077 7.8281le —1 3.9140 1.7899e — 2
21.107? 6.0590e — 1 4.2844 9.5663e — 3
20.107? 5.1377e —1 5.1377 6.0098¢ — 3
2-1.1072 4.1156e — 1 5.8204 4.8575e — 3
272.107°2 3.570le — 1 7.1401 4.6160e — 3

o-dependency
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Finite element discretization

We discuss a standard FE-discretization:
@ Piecewise constant or piecewise linear controls
@ Piecewise linear finite elements for the state

In the case of a semidiscretization (only discretization of the PDEs) we
can apply the results concerning the stability presented before. The
perturbation o, repesents now the discretization error

|Te — Bl)l 12y < c/ae < chlIn b2

For full discretization we have to modify the estimation strategy.
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The fully discretized problem

@ We require the existence of an inner point for the undiscretized
problem.

@ Therefore, it is easy to construct a control uf which is close to the
solution of the fully discretized problem up and feasible for the
undiscretized problem.

@ However, we need also a control u® which is close to the solution of
the undiscretized problem © and feasible for the discretized problem.

@ Consequently, we need two ingredients:

@ A piecewise constant (linear) control which is close to @
@ A piecewise constant (linear) inner point

@ This problem is solved using the [2-projection of both points.
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Basic properties and discretization error

|Sf — Shfll 1o

< ch?| Inh||SFllwe (o)
ISf = Suflli=(ey < ch?(In2(If ] 1)

The second inequality is essentially needed because of the piecewise
constant controls. Estimating all terms, we end up with:

Discretization error

1T — Bl 20y < chlinh| + f(g) - h'/?

Moreover, we have
f(e)—=0 for €—0.

Challenge for the future: Optimal tuning of h and ¢
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Summary

(]

Optimal control problems with pointwise state constraints can be
regularized with a Lavrentiev type regularization.

The regularization error can be estimated.
The solutions are stable with respect to noisy data.
It is possible to construct feasible approximations.

¢ ¢ ¢ ¢

Estimates for the discretization error are available.
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