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Multistage stochastic programs

Let ξ = {ξt}T
t=1 be an IRd-valued discrete-time stochastic process

defined on some probability space (Ω,F , IP ) and with ξ1 deter-

ministic. The stochastic decision xt at period t is assumed to

be measurable with respect to the σ-field Ft(ξ) := σ(ξ1, . . . , ξt)

(nonanticipativity).

Multistage stochastic program:

min

IE[

T∑
t=1

〈bt(ξt), xt〉]

∣∣∣∣∣∣
xt ∈ Xt,

xt is Ft(ξ)−measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T


where Xt are nonempty and polyhedral sets, At,0 are fixed recourse

matrices and bt(·), ht(·) and At,1(·) are affine functions depending

on ξt, where ξ varies in a polyhedral subset Ξ of IRTd.

If the process {ξt}T
t=1 has a finite number of scenarios, they exhibit

a scenario tree structure.



Home Page

Title Page

Contents

JJ II

J I

Page 3 of 29

Go Back

Full Screen

Close

Quit

To have the multistage stochastic program well defined, we assume

xt ∈ Lr′(Ω,F , IP ; IRmt) and ξt ∈ Lr(Ω,F , IP ; IRd), where r ≥ 1

and

r′ :=


r

r−1 , if costs are random

r , if only right-hand sides are random

∞ , if all technology matrices are random and r = T.

The measurability or nonanticipativity constraint may be expressed

via the subspace

Nr′(ξ) :={x ∈ Lr′(Ω,F , IP ; IRm) : xt = IE[xt|Ft(ξ)], t = 1, . . . , T}

using the conditional expectations IE[ · |Ft(ξ)].

For T = 2 we have Nr′(ξ) = IRm1 × Lr′(Ω,F , P ; IRm2).

Then the multistage stochastic program is of the form

min

{
IE[

T∑
t=1

〈bt(ξt), xt〉]
∣∣∣∣xt ∈ Xt, xt = IE[xt|Ft(ξ)], t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T

}
→ infinite-dimensional optimization problem
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Data process approximation by scenario trees

Solving the multistage stochastic program requires to approximate

the process {ξt}T
t=1 by a process having the form of a scenario tree

based on a finite set N ⊂ IN of nodes.
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Scenario tree with T = 5, N = 22 and 11 leaves

n = 1 root node, n− unique predecessor of node n, path(n) =

{1, . . . , n−, n}, t(n) := |path(n)|, N+(n) set of successors to n,

NT := {n ∈ N : N+(n) = ∅} set of leaves, path(n), n ∈ NT ,

scenario with (given) probability πn, πn :=
∑

ν∈N+(n) π
ν probability

of node n, ξn realization of ξt(n).
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Tree representation of the optimization model

min

{∑
n∈N

πn〈bt(n)(ξ
n), xn〉

∣∣∣∣xn ∈ Xt(n), n ∈ N , A1,0x
1 = h1(ξ

1)

At(n),0x
n + At(n),1x

n− =ht(n)(ξ
n), n ∈ N

}

How to solve the optimization model ?

- Standard software (e.g., CPLEX)

- Decomposition methods for (very) large scale models

(Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Questions:

• Under which conditions and in which sense do multistage mod-

els behave stable with respect to perturbations of ξ ?

• Can such stability results be used to generate (multivariate)

scenario trees ?
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Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)

Under weak assumptions the multistage stochastic program is equiv-

alent to the (first-stage) convex minimization problem

min
{∫

Ξ

f (x1, ξ)P (dξ) : x1 ∈ X1

}
,

where f is an integrand on IRm1 × Ξ given by

f (x1, ξ):=〈b1(ξ1), x1〉 + Φ2(x1, ξ
2),

Φt(x1, . . . , xt−1, ξ
t):=inf{〈bt(ξt), xt〉+IE

[
Φt+1(x1, . . . , xt, ξ

t+1)|Ft

]
:

xt ∈ Xt, At,0xt + At,1(ξt)xt−1 = ht(ξt)}

for t = 2, . . . , T , where ΦT+1(x1, . . . , xT , ξT+1) := 0.

→The integrand f depends on the probability measure IP and,

thus, also on the probability distribution P = IP ◦ ξ−1 of ξ in a

nonlinear way ! Hence, earlier approaches to stability fail !
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Quantitative Stability

Let us introduce some notations. Let F denote the objective func-

tion defined on Lr(Ω,F , IP ; IRs) × Lr′(Ω,F , IP ; IRm) → IR by

F (ξ, x) := IE[
∑T

t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ Lr′(Ω,F , IP ; IRm)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multistage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ) ∩Nr′(ξ)}.

Let v(ξ) denote its optimal value and, for any α ≥ 0,

lα(F (ξ, ·)) := {x ∈ X (ξ) ∩Nr′(ξ) : F (ξ, x) ≤ v(ξ) + α}
S(ξ) := l0(F (ξ, ·))

denote the α-level set and the solution set of the stochastic pro-

gram with input ξ.
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The following conditions are imposed:

(A1) ξ ∈ Lr(Ω,F , IP ; IRs) for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , IP ; IRs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty

(relatively complete recourse locally around ξ).

(A3) The optimal values v(ξ̃) are finite for all ξ̃ ∈ Lr(Ω,F , IP ; IRs)

with ‖ξ̃ − ξ‖r ≤ δ and the objective function F is level-bounded

locally uniformly at ξ, i.e., for some α > 0 there exists a δ > 0 and

a bounded subset B of Lr′(Ω,F , IP ; IRm) such that lα(F (ξ̃, ·)) is

nonempty and contained in B for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with

‖ξ̃ − ξ‖r ≤ δ.

Norm in Lr: ‖ξ‖r := (
T∑

t=1
IE[‖ξt‖r])

1
r
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Theorem: (Heitsch/Römisch/Strugarek, SIAM J. Opt. 2006)

Let (A1), (A2) and (A3) be satisfied, r > 1 and X1 be bounded.

Then there exist positive constants L and δ such that

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + Df(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,F , IP ; IRs) with ‖ξ̃ − ξ‖r ≤ δ.

Assume that technology matrices are non-random, and the solution

x∗ of the original problem is unique.

If (ξ(n)) is a sequence in ×T
t=1Lr(Ω,Ft(ξ), IP ; IRs) such that

‖ξ(n) − ξ‖r and Df(ξ
(n), ξ)

converge to 0 and if (x(n)) is a sequence of solutions of the ap-

proximate problems, then the sequence (x(n)) converges to x∗ with

respect to the weak topology in Lr′.

Here, Df(ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

Df(ξ, ξ̃)= inf
x∈S(ξ)
x̃∈S(ξ̃)

T−1∑
t=2

max{‖xt − IE[xt|Ft(ξ̃)]‖r′,‖x̃t − IE[x̃t|Ft(ξ)]‖r′}.
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Remark:
Simple examples show that the filtration distance is indispensable

for the stability result to hold.

Note that Df is not a metric on Lr(Ω,F , IP ; IRs) (although non-

negative and symmetric).

The filtration distance of ξ and ξ̃ with ‖ξ̃ − ξ‖r ≤ δ may be

estimated by

Df(ξ, ξ̃) ≤ sup
x∈B

T−1∑
t=2

‖IE[xt|Ft(ξ)]− IE[xt|Ft(ξ̃)]‖r′

≤ C sup
‖x‖r′≤1

T−1∑
t=2

‖IE[xt|Ft(ξ)]− IE[xt|Ft(ξ̃)]‖r′,

where δ > 0 and B are the constant and Lr′-bounded set appearing

in (A2) and (A3), respectively, and the constant C > 0 is chosen

such ‖x‖r′ ≤ C for all x ∈ B.

The final term may be interpreted as a metric distance of filtrations

or information distance.
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Generation of scenario trees

(i) In most practical situations scenarios ξi with known probabili-

ties pi, i = 1, . . . , N , can be generated, e.g., simulation scenar-

ios from (parametric or nonparametric) statistical models of ξ

or (nearly) optimal quantizations of the probability distribution

of ξ.

(ii) Construction of a scenario tree out of the scenarios ξi with

probabilities pi, i = 1, . . . , N ,.
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Approaches for (ii):

(1) Bound-based approximation methods,

(Frauendorfer 96, Kuhn 05, Edirisinghe 99, Casey/Sen 05).

(2) Monte Carlo-based schemes (inside or outside decomposition

methods) (e.g. Shapiro 03, 06, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 04).

(3) the use of Quasi Monte Carlo integration quadratures

(Pennanen 05, 06).

(4) EVPI-based sampling schemes (inside decomposition schemes)

(Corvera Poire 95, Dempster 04).

(5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics

(Pflug 01, Hochreiter/Pflug 02, Mirkov/Pflug 06; Gröwe-Kuska/Heitsch/Römisch 01, 03,

Heitsch/Römisch 05).

Survey: Dupačová/Consigli/Wallace 00
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Constructing scenario trees

Let ξ be the original stochastic process on some probability space

(Ω,F , IP ) with parameter set {1, . . . , T} and state space IRd. We

aim at generating a scenario tree ξtr such that

‖ξ − ξtr‖r and Df(ξ, ξtr)

and, thus,

|v(ξ)− v(ξtr)|
are small.

To determine such a scenario tree, we start with a discrete approxi-

mation ξf consisting of scenarios ξi = (ξi
1, . . . , ξ

i
T ) with probabilities

pi, i = 1, . . . , N . ξf is a fan of individual scenarios.

 t = 1  t = 2  t = 3  t = 4  t = 5
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The fan ξf is assumed to be adapted to the filtration (Ft(ξ))Tt=1

and

‖ξ − ξf‖r ≤ εappr.

Algorithms are developed that generate a scenario tree ξtr by delet-

ing and bundling scenarios of ξf (that are similar at t) such that it

is also adapted to the filtration (Ft(ξ))Tt=1 and satisfies

(1) ‖ξf − ξtr‖r ≤ εr

(2) inf
x∈S(ξf)

T−1∑
t=2

‖xt − IE[xt|Ft(ξtr)]‖r′ ≤ εf.

Since it holds

Df(ξ, ξtr) ≤ εappr + inf
x∈S(ξf)

T−1∑
t=2

‖xt − IE[xt|Ft(ξtr)]‖r′,

if ξf is sufficiently close to ξ, we obtain in case εappr + εr ≤ δ that

|v(ξ)− v(ξtr)| ≤ L(2εappr + εr + εf).



Home Page

Title Page

Contents

JJ II

J I

Page 15 of 29

Go Back

Full Screen

Close

Quit

(1) Forward tree generation

Let scenarios ξi with probabilities pi, i = 1, . . . , N , fixed root

ξ∗1 ∈ IRd, r ≥ 1, and tolerances εr, εt, t = 2, . . . , T , be given such

that
T∑

t=2
εt ≤ εr.

Step 1: Set ξ̂1 := ξf and C1 = {I = {1, . . . , N}}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1
t−1 }. Determine disjoint index

sets Ik
t and Jk

t of remaining and deleted scenarios such that Ik
t ∪

Jk
t = Ck

t−1, a mapping αt : I → I

αt(j) =

{
ikt (j) , j ∈ Jk

t , k = 1, . . . , Kt−1,

j , otherwise,

where ikt (j) ∈ Ik
t such that

ikt (j) ∈ arg min
i∈Ik

t

|ξ̂t−1,i − ξ̂t−1,j|t,
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a stochastic process ξ̂t

ξ̂t,i
τ =

{
ξ

ατ (i)
τ , τ ≤ t,

ξi
τ , otherwise,

such that

‖ξ̂t − ξ̂t−1‖r,t ≤ εt.

Set It := ∪Kt−1
k=1 Ik

t and Ct := {α−1
t (i) : i ∈ Ik

t , k = 1, . . . , Kt−1}.

Step T+1: Let CT = {C1
T , . . . , C

KT
T }. Construct a stochastic

process ξtr having KT scenarios ξk
tr such that ξk

tr,t := ξ
αt(i)
t with

probabilities πi
T =

∑
j∈Ck

T

pj if i ∈ Ck
T , k = 1, . . . , KT , t = 2, . . . , T .

Proposition: ‖ξf − ξtr‖r ≤
T∑

t=2
εt ≤ εr.
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Illustration of forward tree construction

 t = 1  t = 2  t = 3  t = 4  t = 5
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 t = 3 t = 1  t = 2  t = 4  t = 5
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 t = 5 t = 1  t = 2  t = 3  t = 4
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(2) Bounding approximate filtration distances

Aim: ∆(ξf, ξtr) := inf
x∈S(ξf)

T−1∑
t=2

‖xt − IE[xt|Ft(ξtr)]‖r′ ≤ εf

Two possibilities:

(i) Estimates in terms of some solutions with input ξf, which would

require to solve a two-stage model.

(ii) Estimates in terms of the input ξf.

Proposition:
Let (A2) and (A3) be satisfied, X1 be bounded, 1 ≤ r′ < ∞
and ξf is sufficiently close to ξ. Assume that Ft(ξf) is identical for

t = 2, . . . , T . Then there exists a constant L̂ > 0 such that

∆(ξf, ξtr) ≤ L̂
( ∑

i∈I2

∑
j∈I2,i

pj|ξj − ξi|r′
) 1

r′

Condition:
∑
i∈I2

∑
j∈I2,i

pj|ξj − ξi|r′ ≤ εr′
f

<Start Animation>

file:E:/anim05/animation.html
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Numerical experience

We consider the electricity portfolio management of a municipal

power company. Data was available on the electrical load demand

and on electricity prices at the market place EEX.

A multivariate statistical model is developed for the yearly demand-

price process ξ that allowed to generate yearly demand-price sce-

narios ξi, with probabilities pi = 1
N , i = 1, . . . , N .

These scenarios are assumed to form the process ξf. Branching in

ξtr was allowed at most monthly. The tolerances εt at branching

points were chosen such that

εt =
ε

T
[1 + q(

1

2
− t

T
)], t = 2, . . . , T,

where the parameter q ∈ [0, 1] affects the branching structure of

the constructed trees. For the test runs we used q = 0.6.

The test runs were performed on a PC with a 3 GHz Intel Pentium CPU and 1 GByte main memory.
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Yearly demand-price scenario trees with relative tolerance

εrel,r = 0.25

 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

a) Forward tree construction with relative filtration tolerance εrel,f = 0.35
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 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

b) Forward tree construction with relative filtration tolerance εrel,f = 0.45
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Yearly demand-price scenario trees with relative tolerance

εrel,r = 0.6

 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

a) Forward tree construction with relative filtration tolerance εrel,f = 0.6
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 Jan      Feb       Mar      Apr      May       Jun       Jul       Aug       Sep       Oct       Nov     Dec

b) Forward tree construction with relative filtration tolerance εrel,f = 0.7
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εrel,r εrel,f Scenarios Nodes Stages Time
(sec)

0.10 0.20 98 774 988 6 25.01
0.30 99 774 424 6 25.05

0.15 0.25 94 719 714 12 24.97
0.35 94 723 495 10 24.99

0.20 0.30 90 670 321 9 24.94
0.40 90 670 478 10 24.94

0.25 0.35 85 619 296 9 24.95
0.45 87 620 340 10 24.93

0.30 0.40 80 547 824 11 24.86
0.50 83 567 250 11 24.91

0.35 0.45 72 482 163 11 24.94
0.55 76 498 732 11 24.90

0.40 0.50 67 426 794 8 24.92
0.60 71 444 060 11 24.90

0.45 0.55 60 368 380 7 24.97
0.65 65 383 556 11 24.87

0.50 0.60 50 309 225 6 24.99
0.70 60 319 380 11 24.88

0.55 0.65 44 247 303 6 25.00
0.75 51 265 336 10 24.91

0.60 0.70 37 188 263 6 25.17
0.80 45 203 321 9 24.98

Numerical results for yearly demand-price scenario trees

H. Heitsch, W. Römisch: Scenario tree modelling for multistage stochastic programs, Preprint 296,
DFG Research Center Matheon ”Mathematics for key technologies”, 2005.


