Multistage stochastic programs: Stability and scenario trees

H. Heitsch and W. Römisch

Humboldt-University Berlin
Institute of Mathematics
10099 Berlin, Germany
http://www.math.hu-berlin.de/~romisch

DMV-Tagung, Bonn, September 18-22, 2006

Multistage stochastic programs

Let $\xi=\left\{\xi_{t}\right\}_{t=1}^{T}$ be an \mathbb{R}^{d}-valued discrete-time stochastic process defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and with ξ_{1} deterministic. The stochastic decision x_{t} at period t is assumed to be measurable with respect to the σ-field $\mathcal{F}_{t}(\xi):=\sigma\left(\xi_{1}, \ldots, \xi_{t}\right)$ (nonanticipativity).

Multistage stochastic program:

$\min \left\{\begin{array}{l|l}\mathbb{E}\left[\sum_{t=1}^{T}\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right)\right] & \begin{array}{l}x_{t} \in X_{t}, \\ x_{t} \text { is } \mathcal{F}_{t}(\xi)-\text { measurable }, t=1, \ldots, T, \\ A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right), t=2, \ldots, T\end{array}\end{array}\right\}$
where X_{t} are nonempty and polyhedral sets, $A_{t, 0}$ are fixed recourse matrices and $b_{t}(\cdot), h_{t}(\cdot)$ and $A_{t, 1}(\cdot)$ are affine functions depending on ξ_{t}, where ξ varies in a polyhedral subset Ξ of $\mathbb{R}^{T d}$.

If the process $\left\{\xi_{t}\right\}_{t=1}^{T}$ has a finite number of scenarios, they exhibit a scenario tree structure.

To have the multistage stochastic program well defined, we assume $x_{t} \in L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m_{t}}\right)$ and $\xi_{t} \in L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{d}\right)$, where $r \geq 1$ and
$r^{\prime}:=\left\{\begin{array}{cl}\frac{r}{r-1}, & \text { if costs are random } \\ r, & \text { if only right-hand sides are random } \\ \infty, & \text { if all technology matrices are random and } r=T .\end{array}\right.$
The measurability or nonanticipativity constraint may be expressed via the subspace
$\mathcal{N}_{r^{\prime}}(\xi):=\left\{x \in L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m}\right): x_{t}=\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\xi)\right], t=1, \ldots, T\right\}$
using the conditional expectations $\mathbb{E}\left[\cdot \mid \mathcal{F}_{t}(\xi)\right]$.
For $T=2$ we have $\mathcal{N}_{r^{\prime}}(\xi)=\mathbb{R}^{m_{1}} \times L_{r^{\prime}}\left(\Omega, \mathcal{F}, P ; \mathbb{R}^{m_{2}}\right)$.
Then the multistage stochastic program is of the form
$\min \left\{\mathbb{E}\left[\sum_{t=1}^{T}\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right\rangle\right] \left\lvert\, \begin{array}{l}x_{t} \in X_{t}, x_{t}=\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\xi)\right], t=1, \ldots, T, \\ A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right), t=2, \ldots, T\end{array}\right.\right\}$
\rightarrow infinite-dimensional optimization problem

Data process approximation by scenario trees

Solving the multistage stochastic program requires to approximate the process $\left\{\xi_{t}\right\}_{t=1}^{T}$ by a process having the form of a scenario tree based on a finite set $\mathcal{N} \subset \mathbb{N}$ of nodes.

Scenario tree with $T=5, N=22$ and 11 leaves
$n=1$ root node, n_{-}unique predecessor of node n, $\operatorname{path}(n)=$ $\left\{1, \ldots, n_{-}, n\right\}, \quad t(n):=|\operatorname{path}(n)|, \mathcal{N}_{+}(n)$ set of successors to n, $\mathcal{N}_{T}:=\left\{n \in \mathcal{N}: \mathcal{N}_{+}(n)=\emptyset\right\}$ set of leaves, path $(n), n \in \mathcal{N}_{T}$, scenario with (given) probability $\pi^{n}, \pi^{n}:=\sum_{\nu \in \mathcal{N}_{+}(n)} \pi^{\nu}$ probability of node n, ξ^{n} realization of $\xi_{t(n)}$.

Tree representation of the optimization model

How to solve the optimization model ?

- Standard software (e.g., CPLEX)
- Decomposition methods for (very) large scale models (Ruszczynski/Shapiro (Eds.): Stochastic Programming, Handbook, 2003)

Questions:

- Under which conditions and in which sense do multistage models behave stable with respect to perturbations of ξ ?
- Can such stability results be used to generate (multivariate) scenario trees ?

Dynamic programming

Theorem: (Evstigneev 76, Rockafellar/Wets 76)
Under weak assumptions the multistage stochastic program is equivalent to the (first-stage) convex minimization problem

$$
\min \left\{\int_{\Xi} f\left(x_{1}, \xi\right) P(d \xi): x_{1} \in X_{1}\right\}
$$

where f is an integrand on $\mathbb{R}^{m_{1}} \times \Xi$ given by

$$
\begin{aligned}
& f\left(x_{1}, \xi\right):=\left\langle b_{1}\left(\xi_{1}\right), x_{1}\right\rangle+\Phi_{2}\left(x_{1}, \xi^{2}\right), \\
& \Phi_{t}\left(x_{1}, \ldots, x_{t-1}, \xi^{t}\right):=\inf \left\{\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right\rangle+\mathbb{E}\left[\Phi_{t+1}\left(x_{1}, \ldots, x_{t}, \xi^{t+1}\right) \mid \mathcal{F}_{t}\right]\right. \\
&\left.x_{t} \in X_{t}, A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right)\right\}
\end{aligned}
$$

for $t=2, \ldots, T$, where $\Phi_{T+1}\left(x_{1}, \ldots, x_{T}, \xi^{T+1}\right):=0$.
\rightarrow The integrand f depends on the probability measure \mathbb{P} and, thus, also on the probability distribution $P=\mathbb{P} \circ \xi^{-1}$ of ξ in a nonlinear way! Hence, earlier approaches to stability fail!

Quantitative Stability

Let us introduce some notations. Let F denote the objective function defined on $L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right) \times L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ by $F(\xi, x):=\mathbb{E}\left[\sum_{t=1}^{T}\left\langle b_{t}\left(\xi_{t}\right), x_{t}\right\rangle\right]$, let

$$
\mathcal{X}_{t}\left(x_{t-1} ; \xi_{t}\right):=\left\{x_{t} \in X_{t} \mid A_{t, 0} x_{t}+A_{t, 1}\left(\xi_{t}\right) x_{t-1}=h_{t}\left(\xi_{t}\right)\right\}
$$

denote the t-th feasibility set for every $t=2, \ldots, T$ and

$$
\mathcal{X}(\xi):=\left\{x \in L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m}\right) \mid x_{1} \in X_{1}, x_{t} \in \mathcal{X}_{t}\left(x_{t-1} ; \xi_{t}\right)\right\}
$$

the set of feasible elements with input ξ.
Then the multistage stochastic program may be rewritten as

$$
\min \left\{F(\xi, x): x \in \mathcal{X}(\xi) \cap \mathcal{N}_{r^{\prime}}(\xi)\right\}
$$

Let $v(\xi)$ denote its optimal value and, for any $\alpha \geq 0$,

$$
\begin{aligned}
l_{\alpha}(F(\xi, \cdot)) & :=\left\{x \in \mathcal{X}(\xi) \cap \mathcal{N}_{r^{\prime}}(\xi): F(\xi, x) \leq v(\xi)+\alpha\right\} \\
S(\xi) & :=l_{0}(F(\xi, \cdot))
\end{aligned}
$$

denote the α-level set and the solution set of the stochastic pro- gram with input ξ.

The following conditions are imposed:
(A1) $\xi \in L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right)$ for some $r \geq 1$.
(A2) There exists a $\delta>0$ such that for any $\tilde{\xi} \in L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right)$ with $\|\tilde{\xi}-\xi\|_{r} \leq \delta$, any $t=2, \ldots, T$ and any $x_{1} \in X_{1}, x_{\tau} \in$ $\mathcal{X}_{\tau}\left(x_{\tau-1} ; \tilde{\xi}_{\tau}\right), \tau=2, \ldots, t-1$, the set $\mathcal{X}_{t}\left(x_{t-1} ; \tilde{\xi}_{t}\right)$ is nonempty (relatively complete recourse locally around ξ).
(A3) The optimal values $v(\tilde{\xi})$ are finite for all $\tilde{\xi} \in L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right)$ with $\|\tilde{\xi}-\xi\|_{r} \leq \delta$ and the objective function F is level-bounded locally uniformly at ξ, i.e., for some $\alpha>0$ there exists a $\delta>0$ and a bounded subset B of $L_{r^{\prime}}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{m}\right)$ such that $l_{\alpha}(F(\tilde{\xi}, \cdot))$ is nonempty and contained in B for all $\tilde{\xi} \in L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right)$ with $\|\tilde{\xi}-\xi\|_{r} \leq \delta$.

Norm in $L_{r}:\|\xi\|_{r}:=\left(\sum_{t=1}^{T} \mathbb{E}\left[\left\|\xi_{t}\right\|^{r}\right)^{\frac{1}{r}}\right.$

Theorem: (Heitsch/Römisch/Strugarek, SIAM J. Opt. 2006)

Let (A1), (A2) and (A3) be satisfied, $r>1$ and X_{1} be bounded.
Then there exist positive constants L and δ such that

$$
|v(\xi)-v(\tilde{\xi})| \leq L\left(\|\xi-\tilde{\xi}\|_{r}+D_{\mathrm{f}}(\xi, \tilde{\xi})\right)
$$

holds for all $\tilde{\xi} \in L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right)$ with $\|\tilde{\xi}-\xi\|_{r} \leq \delta$.
Assume that technology matrices are non-random, and the solution x^{*} of the original problem is unique. If $\left(\xi^{(n)}\right)$ is a sequence in $\times_{t=1}^{T} L_{r}\left(\Omega, \mathcal{F}_{t}(\xi), \mathbb{P} ; \mathbb{R}^{s}\right)$ such that

$$
\left\|\xi^{(n)}-\xi\right\|_{r} \quad \text { and } \quad D_{\mathrm{f}}\left(\xi^{(n)}, \xi\right)
$$

converge to 0 and if $\left(x^{(n)}\right)$ is a sequence of solutions of the approximate problems, then the sequence $\left(x^{(n)}\right)$ converges to x^{*} with respect to the weak topology in $L_{r^{\prime}}$.

Here, $D_{\mathrm{f}}(\xi, \tilde{\xi})$ denotes the filtration distance of ξ and $\tilde{\xi}$ defined by
$D_{\mathrm{f}}(\xi, \tilde{\xi})=\inf _{\substack{x \in S(\xi) \\ \tilde{x} \in S(\tilde{\xi})}} \sum_{t=2}^{T-1} \max \left\{\left\|x_{t}-\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\tilde{\xi})\right]\right\|_{r^{\prime}},\left\|\tilde{x}_{t}-\mathbb{E}\left[\tilde{x}_{t} \mid \mathcal{F}_{t}(\xi)\right]\right\|_{r^{\prime}}\right\}$.

Remark:

Simple examples show that the filtration distance is indispensable for the stability result to hold.
Note that D_{f} is not a metric on $L_{r}\left(\Omega, \mathcal{F}, \mathbb{P} ; \mathbb{R}^{s}\right)$ (although nonnegative and symmetric).
The filtration distance of ξ and $\tilde{\xi}$ with $\|\tilde{\xi}-\xi\|_{r} \leq \delta$ may be estimated by

$$
\begin{aligned}
D_{\mathrm{f}}(\xi, \tilde{\xi}) & \leq \sup _{x \in B} \sum_{t=2}^{T-1}\left\|\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\xi)\right]-\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\tilde{\xi})\right]\right\|_{r^{\prime}} \\
& \leq C \sup _{\|x\|_{r^{\prime}} \leq 1} \sum_{t=2}^{T-1}\left\|\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\xi)\right]-\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}(\tilde{\xi})\right]\right\|_{r^{\prime}},
\end{aligned}
$$

where $\delta>0$ and B are the constant and $L_{r^{\prime}}$-bounded set appearing in (A2) and (A3), respectively, and the constant $C>0$ is chosen such $\|x\|_{r^{\prime}} \leq C$ for all $x \in B$.
The final term may be interpreted as a metric distance of filtrations or information distance.

Generation of scenario trees

(i) In most practical situations scenarios ξ^{i} with known probabilities $p_{i}, i=1, \ldots, N$, can be generated, e.g., simulation scenarios from (parametric or nonparametric) statistical models of ξ or (nearly) optimal quantizations of the probability distribution of ξ.
(ii) Construction of a scenario tree out of the scenarios ξ^{i} with probabilities $p_{i}, i=1, \ldots, N$,.

Approaches for (ii):
(1) Bound-based approximation methods, (Frauendorfer 96, Kuhn 05, Edirisinghe 99, Casey/Sen 05).
(2) Monte Carlo-based schemes (inside or outside decomposition methods) (e.g. Shapiro 03, 06, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 04).
(3) the use of Quasi Monte Carlo integration quadratures (Pennanen 05, 06).
(4) EVPI-based sampling schemes (inside decomposition schemes) (Corvera Poire 95, Dempster 04).
(5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).
(6) (Nearly) best approximations based on probability metrics (Pflug 01, Hochreiter/Pflug 02, Mirkov/Pflug 06; Gröwe-Kuska/Heitsch/Römisch 01, 03, Heitsch/Römisch 05).

Constructing scenario trees

Let ξ be the original stochastic process on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with parameter set $\{1, \ldots, T\}$ and state space \mathbb{R}^{d}. We aim at generating a scenario tree $\xi_{\text {tr }}$ such that

$$
\left\|\xi-\xi_{\operatorname{tr}}\right\|_{r} \quad \text { and } \quad D_{\mathrm{f}}\left(\xi, \xi_{\operatorname{tr}}\right)
$$

and, thus,

$$
\left|v(\xi)-v\left(\xi_{\mathrm{tr}}\right)\right|
$$

are small.
To determine such a scenario tree, we start with a discrete approximation ξ_{f} consisting of scenarios $\xi^{i}=\left(\xi_{1}^{i}, \ldots, \xi_{T}^{i}\right)$ with probabilities $p_{i}, i=1, \ldots, N . \xi_{\mathrm{f}}$ is a fan of individual scenarios.

The fan ξ_{f} is assumed to be adapted to the filtration $\left(\mathcal{F}_{t}(\xi)\right)_{t=1}^{T}$ and

$$
\left\|\xi-\xi_{f}\right\|_{r} \leq \varepsilon_{\text {appr }} .
$$

Algorithms are developed that generate a scenario tree $\xi_{\text {tr }}$ by deleting and bundling scenarios of ξ_{f} (that are similar at t) such that it is also adapted to the filtration $\left(\mathcal{F}_{t}(\xi)\right)_{t=1}^{T}$ and satisfies

$$
\begin{array}{r}
\left\|\xi_{\mathrm{f}}-\xi_{\mathrm{tr}}\right\|_{r} \leq \varepsilon_{\mathrm{r}} \\
\text { (2) } \inf _{x \in S\left(\mathrm{f}_{\mathrm{f}}\right)} \sum_{t=2}^{T-1}\left\|x_{t}-\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}\left(\xi_{\mathrm{tr}}\right)\right]\right\|_{r^{\prime}} \leq \varepsilon_{\mathrm{f}}
\end{array}
$$

Since it holds

$$
D_{\mathrm{f}}\left(\xi, \xi_{\text {tr }}\right) \leq \varepsilon_{\text {appr }}+\inf _{x \in S\left(\xi_{\mathrm{f}}\right)} \sum_{t=2}^{T-1}\left\|x_{t}-\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}\left(\xi_{\text {tr }}\right)\right]\right\|_{r^{\prime}}
$$

if ξ_{f} is sufficiently close to ξ, we obtain in case $\varepsilon_{\text {appr }}+\varepsilon_{\mathrm{r}} \leq \delta$ that

$$
\left|v(\xi)-v\left(\xi_{\text {tr }}\right)\right| \leq L\left(2 \varepsilon_{\text {appr }}+\varepsilon_{\mathrm{r}}+\varepsilon_{\mathrm{f}}\right) .
$$

(1) Forward tree generation

Let scenarios ξ^{i} with probabilities $p_{i}, i=1, \ldots, N$, fixed root $\xi_{1}^{*} \in \mathbb{R}^{d}, r \geq 1$, and tolerances $\varepsilon_{\mathrm{r}}, \varepsilon_{t}, t=2, \ldots, T$, be given such that $\sum_{t=2}^{T} \varepsilon_{t} \leq \varepsilon_{\mathrm{r}}$.

Step 1: Set $\hat{\xi}^{1}:=\xi_{\mathrm{f}}$ and $\mathcal{C}_{1}=\{I=\{1, \ldots, N\}\}$.
Step t: Let $\mathcal{C}_{t-1}=\left\{C_{t-1}^{1}, \ldots, C_{t-1}^{K_{t-1}}\right\}$. Determine disjoint index sets I_{t}^{k} and J_{t}^{k} of remaining and deleted scenarios such that $I_{t}^{k} \cup$ $J_{t}^{k}=C_{t-1}^{k}$, a mapping $\alpha_{t}: I \rightarrow I$

$$
\alpha_{t}(j)=\left\{\begin{array}{cl}
i_{t}^{k}(j) & , j \in J_{t}^{k}, k=1, \ldots, K_{t-1} \\
j & , \text { otherwise }
\end{array}\right.
$$

where $i_{t}^{k}(j) \in I_{t}^{k}$ such that

$$
i_{t}^{k}(j) \in \arg \min _{i \in I_{t}^{k}}\left|\hat{\xi}^{t-1, i}-\hat{\xi}^{t-1, j}\right|_{t}
$$

a stochastic process $\hat{\xi}^{t}$

$$
\hat{\xi}_{\tau}^{t, i}=\left\{\begin{array}{cl}
\xi_{\tau}^{\alpha_{\tau}(i)} & , \tau \leq t \\
\xi_{\tau}^{i} & , \text { otherwise }
\end{array}\right.
$$

such that

$$
\left\|\hat{\xi}^{t}-\hat{\xi}^{t-1}\right\|_{r, t} \leq \varepsilon_{t} .
$$

Set $I_{t}:=\cup_{k=1}^{K_{t-1}} I_{t}^{k}$ and $\mathcal{C}_{t}:=\left\{\alpha_{t}^{-1}(i): i \in I_{t}^{k}, k=1, \ldots, K_{t-1}\right\}$.
Step $\mathbf{T}+1$: Let $\mathcal{C}_{T}=\left\{C_{T}^{1}, \ldots, C_{T}^{K_{T}}\right\}$. Construct a stochastic process $\xi_{\text {tr }}$ having K_{T} scenarios $\xi_{\text {tr }}^{k}$ such that $\xi_{\text {tr }, t}^{k}:=\xi_{t}^{\alpha_{t}(i)}$ with probabilities $\pi_{T}^{i}=\sum_{j \in C^{k}} p_{j}$ if $i \in C_{T}^{k}, k=1, \ldots, K_{T}, t=2, \ldots, T$.

Proposition: $\left\|\xi_{\mathrm{f}}-\xi_{\mathrm{tr}}\right\|_{r} \leq \sum_{t=2}^{T} \varepsilon_{t} \leq \varepsilon_{\mathrm{r}}$.

Illustration of forward tree construction

$$
t=1 \quad t=2 \quad t=3 \quad t=4 \quad t=5
$$

$$
t=1 \quad t=2 \quad t=3 \quad t=4 \quad t=5
$$

$$
t=1 \quad t=2 \quad t=3 \quad t=4 \quad t=5
$$

Page 20 of 29

44

$t=1 \quad t=2 \quad t=3 \quad t=4 \quad t=5$

(2) Bounding approximate filtration distances

Aim: $\Delta\left(\xi_{\mathrm{f}}, \xi_{\mathrm{tr}}\right):=\inf _{x \in S\left(\xi_{\mathrm{f}}\right)} \sum_{t=2}^{T-1}\left\|x_{t}-\mathbb{E}\left[x_{t} \mid \mathcal{F}_{t}\left(\xi_{\mathrm{tr}}\right)\right]\right\|_{r^{\prime}} \leq \varepsilon_{\mathrm{f}}$

Two possibilities:

(i) Estimates in terms of some solutions with input ξ_{f}, which would require to solve a two-stage model.
(ii) Estimates in terms of the input ξ_{f}.

Proposition:

Let (A2) and (A3) be satisfied, X_{1} be bounded, $1 \leq r^{\prime}<\infty$ and ξ_{f} is sufficiently close to ξ. Assume that $\mathcal{F}_{t}\left(\xi_{\mathrm{f}}\right)$ is identical for $t=2, \ldots, T$. Then there exists a constant $\hat{L}>0$ such that

$$
\Delta\left(\xi_{\mathrm{f}}, \xi_{\mathrm{tr}}\right) \leq \hat{L}\left(\sum_{i \in I_{2}} \sum_{j \in I_{2, i}} p_{j}\left|\xi^{j}-\xi^{i}\right|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}
$$

Condition: $\quad \sum_{i \in I_{2}} \sum_{j \in I_{2, i}} p_{j}\left|\xi^{j}-\xi^{i}\right|^{r^{\prime}} \leq \varepsilon_{\mathrm{f}}^{r^{\prime}}$

Numerical experience

We consider the electricity portfolio management of a municipal power company. Data was available on the electrical load demand and on electricity prices at the market place EEX.

A multivariate statistical model is developed for the yearly demandprice process ξ that allowed to generate yearly demand-price scenarios ξ^{i}, with probabilities $p_{i}=\frac{1}{N}, i=1, \ldots, N$.

These scenarios are assumed to form the process ξ_{f}. Branching in $\xi_{\text {tr }}$ was allowed at most monthly. The tolerances ε_{t} at branching points were chosen such that

$$
\varepsilon_{t}=\frac{\varepsilon}{T}\left[1+\bar{q}\left(\frac{1}{2}-\frac{t}{T}\right)\right], \quad t=2, \ldots, T,
$$

where the parameter $\bar{q} \in[0,1]$ affects the branching structure of the constructed trees. For the test runs we used $\bar{q}=0.6$.

The test runs were performed on a PC with a 3 GHz Intel Pentium CPU and 1 GByte main memory.

Yearly demand-price scenario trees with relative tolerance

$$
\varepsilon_{\mathrm{rel}, \mathrm{r}}=0.25
$$

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
a) Forward tree construction with relative filtration tolerance $\varepsilon_{\text {rel, } \mathrm{f}}=0.35$

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
b) Forward tree construction with relative filtration tolerance $\varepsilon_{\text {rel, } \mathrm{f}}=0.45$

Yearly demand-price scenario trees with relative tolerance

$$
\varepsilon_{\mathrm{rel}, \mathrm{r}}=0.6
$$

Page 27 of 29

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
a) Forward tree construction with relative filtration tolerance $\varepsilon_{\text {rel, }, \mathrm{f}}=0.6$

Full Screen

Close

Page 28 of 29

Go Back

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec b) Forward tree construction with relative filtration tolerance $\varepsilon_{\text {rel, } \mathrm{f}}=0.7$

$\varepsilon_{\text {rel,r }}$	$\varepsilon_{\text {rel, } \mathrm{f}}$	Scenarios	Nodes	Stages	Time (sec)
0.10	0.20	98	774988	6	25.01
	0.30	99	774424	6	25.05
0.15	0.25	94	719714	12	24.97
	0.35	94	723495	10	24.99
0.20	0.30	90	670321	9	24.94
	0.40	90	670478	10	24.94
0.25	0.35	85	619296	9	24.95
	0.45	87	620340	10	24.93
0.30	0.40	80	547824	11	24.86
	0.50	83	567250	11	24.91
0.35	0.45	72	482163	11	24.94
	0.55	76	498732	11	24.90
0.40	0.50	67	426794	8	24.92
	0.60	71	444060	11	24.90
0.45	0.55	60	368380	7	24.97
	0.65	65	383556	11	24.87
0.50	0.60	50	309225	6	24.99
	0.70	60	319380	11	24.88
0.55	0.65	44	247303	6	25.00
	0.75	51	265336	10	24.91
0.60	0.70	37	188263	6	25.17
	0.80	45	203321	9	24.98

Numerical results for yearly demand-price scenario trees
H. Heitsch, W. Römisch: Scenario tree modelling for multistage stochastic programs, Preprint 296, DFG Research Center Matheon "Mathematics for key technologies", 2005.

