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Deformations Depend on the Shape

Harald Held (University Duisburg-Essen) Shape Optimization Under Uncertainty DMV 2006 4 / 45



Problem Setting

Fixed Boundaryx

x + u(x)

Id + u

O ⊂ R2
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Linear Elasticity

Elastic body O ⊂ Rd

The boundary ∂O consists of two disjoint parts:

∂O = ΓN ∪ ΓD, ΓD 6= ∅

Internal forces f

External forces g

 displacements u strain characterized by linearized strain tensor

e(u) =
1
2
(∇u +∇uT), eij =

1
2
(ui,j + uj,i)
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Linear Elasticity

Elastic material behaves according to Hooke’s law

Aξ = 2µξ + λ(trξ)Id, for any symmetric matrix ξ

O varying working
domain D,
contains all admissible
shapes,
f ∈ L2(D)d,
g ∈ H1(D)d

PDE 
−div(Ae(u)) = f in O,
u = 0 on ΓD,

(Ae(u))n = g on ΓN
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Composite Finite Elements

Standard FE:
mesh has to resolve the structure of the domain
therefore, min. dim. of FE space is directly linked to number and size of
geometric details of the domain

More efficient: Composite FE (Developed by S. Sauter)
allow coarse-level discretizations of PDEs on complicated domains
principle idea: the shape of FE functions is hierarchically adapted to behavior of
the solution discretization of problems with complicated structures with very
few unknowns
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Examples for Objective Functions

Compliance

J(O) =
∫
O

f · u dx +
∫

ΓN

g · u ds

Least square error compared to target displacement

J(O) =
(∫

O
|u− u0|2 dx

) 1
2

Optimization Problem

inf
O∈Uad

J(O) + `P(O)

existence of optimal shapes requires
smoothness, geometrical or topological
constraints
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Two-Stage Stochastic Linear Program

Information Constraint
decide x 7→ observe z(ω) 7→ decide y = y(x, z(ω))

min
x
{cTx + min

y
{qTy : Wy = z(ω)− Tx, y ∈ Y} : x ∈ X}

min
x
{cTx + G(x, ω) : x ∈ X}

→ looking for a minimal member in family of random variables
{cTx + G(x, ω) : x ∈ X}
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Risk-Neutral Setting

In this case, the random variables are ranked by their expectations.

 min{Eω[cTx + G(x, ω)] : x ∈ X}
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General Objective Function

J(O, u(O, ω)) =
∫
O

j(u) dx + `

∫
∂O

ds, O ∈ Uad, ` > 0

u = u(O, ω) is the solution of the PDE
assume j(.) is linear or quadratic and independent of ω
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The Two Stages

First stage Non-anticipative decision on O has to be taken
The random forces f (ω), g(ω) are observed
Second Stage The variational formulation of elasticity, given O and ω, takes the
role of the second-stage problem

Information constraint here
decide O 7→ observe f (ω), g(ω) 7→ decide u = u(O, ω)
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Variational Formulation of Elasticity

u also coincides with the minimizing element of

inf{E(O, ϕ;ω) : ϕ ∈ H1(O)d, ϕ = 0 on ΓD},

E(O, ϕ;ω) =
∫
O

1
2

Ae(ϕ) · · e(ϕ)− f (ω) · ϕ dx −
∫

ΓN

g(ω) · ϕ ds

Notation

A · · B = tr(ATB) =
d∑

i,j=1

AijBij
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Two-Stage Shape Optimization Problem

min
{
`

∫
∂O

ds +
∫
O

j(u(O, ω)) dx :

u(O, ω) = argmin{E(O, ϕ;ω) : ϕ ∈ H1(ΓD)d},O ∈ Uad
}
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Direct Comparison with Linear Case

Linear 2-Stage Problem

min{ F(x) + E[G(ȳ(x, ω)] : x ∈ X,
ȳ(x, ω) ∈ argmin{G(y) : y ∈ Y(x, ω)}

}

2-Stage Shape Optimization Program

min{ f̃ (O) + E[g̃(O, ū(O, ω))] : O ∈ Uad,
ū(O, ω) ∈ argmin{ẽ(O, u, ω) : u ∈ H1}

}
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Structure of Random Forces

Now, the volume forces f and surface loads g are random with special structure:

 f = f (ω), g = g(ω),

finitely many forces f1, . . . , fK1 ∈ L2(O)d and g1, . . . , gK2 ∈ H1(O)d

random coefficients hf
i (ω), i = 1, . . . ,K1 and hg

i (ω), i = 1, . . . ,K2 such that

f (ω) =
K1∑

i=1

hf
i (ω)fi, g(ω) =

K2∑
i=1

hg
i (ω)gi
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Structure of Random Forces

Additional requirement:

K1∑
i=1

hf
i (ω) = 1,

K2∑
i=1

hg
i (ω) = 1, ∀ω

finitely many scenarios ωi, i = 1, . . . , S which occur with probabilities
πi, i = 1, . . . , S
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Lagrangian Functional

Consider Euler’s equation as a constraint in the minimization problem and introduce
the adjoint state ψ to construct a Lagrangian functional:

L(O, ϕ, ψ;ω) = J(O, ϕ) + dE(O, ϕ, ω;ψ)

First Variation

dE(O, ϕ, ω;ψ) =
d
dε

E(O, ϕ+ εψ;ω)
∣∣∣∣
ε=0
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Optimality Conditions

The stationarity of the Lagrangian gives the optimality conditions:〈
∂ϕL(O, ϕ0, ψ0;ω), φ

〉
= 0,∀φ ∈ H1(O)d,〈

∂ψL(O, ϕ0, ψ0;ω), φ
〉

= 0,∀φ ∈ H1(O)d

first condition adjoint problem
second condition elasticity PDE
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Adjoint Problem

The adjoint state p is the solution of the following problem:
−div(Ae(p)) = −j′(u) in O,
p = 0 on ΓD,

(Ae(p))n = 0 on ΓN

→ will be needed for the shape derivative
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Observations

optimality conditions allow exactly one feasible solution (ϕopt, ψopt)
therefore, it’s the optimal solution
can be obtained by solving elasticity PDEs
j was assumed to be at most quadratic j′ is linear
consequently, optimality conditions are linear in u, p, f , g and φ
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Re-written Problem Formulation

Notation
u(µ,ν), p(µ,ν) denote the solutions of the elasticity problem (Pµ,ν) and the adjoint
problem (P̂µ,ν), resp., with forces fµ and gν , µ ∈ {1, . . . ,K1}, ν ∈ {1, . . . ,K2}

min{ `
∫
∂O ds +

∑S
k=1 πk

∫
O j(ū(O, ωk)) dx :

O ∈ Uad,

ū(O, ωk) :=
∑K1
µ=1 hf

µ(ωk)
∑K2
ν=1 hg

ν(ωk)u(µ,ν),

k = 1, . . . , S,
u(µ,ν) solves (Pµ,ν),

∀(µ, ν) ∈ {1, . . . ,K1} × {1, . . . ,K2}
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Solution

Linearity and minimizing the expected value ⇒ suffices to solve K1 + K2 PDEs,
which is independent of the number of scenarios S.
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Shape Derivative

Definition (Allaire et al)
The shape derivative of J(O) at O is defined as the Fréchet derivative in W1,∞(Rd)d

at 0 of the mapping Θ → J((Id + Θ)(O)), i.e.

J((Id + Θ)(O)) = J(O) + 〈J′(O),Θ〉+ o(Θ)

with limΘ→0
|o(Θ)|
‖θ‖ = 0, where J′(O) is a continuous linear form on W1,∞(Rd)d.
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Form of Shape Derivative

The shape derivative is of the form

〈
J̃′(O),Θ

〉
=

∫
∂O

vΘ · n ds,

with a function v = v(ūk, p̄k, n,H).
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Domain Represented by Level-Set Function

O is described by means of a level-set function Φ in D:
Φ(x) = 0 ⇔ x ∈ ∂O ∩ D,
Φ(x) < 0 ⇔ x ∈ O,
Φ(x) > 0 ⇔ x ∈ (D \ Ō)

normal n to O is ∇Φ
|∇Φ|

mean curvature H is given by divn
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Shape Derivative in Level-Set Notation

only variations in normal direction are interesting
domain O is identified with level-set function Φ

 〈
J̃′(Φ), ϑ

〉
= −

∫
[Φ=0]

v
ϑ

|∇Φ|
ds
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Test Setting

∂O is divided into 3 parts:
ΓD: the fixed Dirichlet boundary
ΓN : part of the Neumann boundary where the surface loads act on;
this is also fixed and does not move during the optimization process
Γ0: all other parts of the boundary; this is the only part of ∂O to be optimized
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Test Setting

objective function (compliance with f ≡ 0):

J(O, ω) =
∫

ΓN

g(ω) · u ds + `Ri(O)

with regularization terms

R1(O) =
∫
∂O

ds (and volume preservation) ,

R2(O) =
∫
O

dx
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Instance 1 - Initial Shape
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Instance 1 - Optimal shapes for g0 and g1

Harald Held (University Duisburg-Essen) Shape Optimization Under Uncertainty DMV 2006 37 / 45



Instance 1 - Optimal shapes for 1
2g0 + 1

2g1 and 2 scenarios
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Instance 2 - Initial shape and optimal shape for g0
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Instance 2 - Optimal shapes for 1
2g0 + 1

2g1 and 2 scenarios
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Instance 3 - Initial shape
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Instance 3 - Optimal shapes for g0 and g1
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Instance 3 - Optimal shape 2 scenarios
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Instance 4 - Initial and Optimal Shapes
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Instance 5 - Optimal shape for g0 and g1 and 2 scenarios
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