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Research goal in Trier

Question

Is there a fast numerical approach for drag minimization with

low relative complexity ?
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Research goal in Trier

Question

Is there a fast numerical approach for drag minimization with

low relative complexity ?

Difficulty

Constructing an optimization method from scratch is not

viable

Aim

Construct an optimization algorithm using existing

simulation tools

Overall effort: constant×simulation effort
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Optimization Problem without Addititional

Constraints

min J(u,q)

subject to c(u,q) = 0

J: the cost function (drag)

c: Euler-flow equations

u: state variable such that the Jacobian Cu is invertible

q: wing profile, parameterized by splines
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Black-Box-Methods

Implicit function theorem:

∃ u : R
nq → R

nu ,q 7→ u(q) : ∀ q : c(u(q), q) = 0.
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Black-Box-Methods

Implicit function theorem:

∃ u : R
nq → R

nu ,q 7→ u(q) : ∀ q : c(u(q), q) = 0.

Reduce the problem

min J(u,q)

subject to c(u,q) = 0

to the unconstrained problem

min J(u(q),q) =: I(q)
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Reduced Gradient via Adjoint Problem

Need to compute the reduced gradient

∇q I = −CT
qC−T

u ∇u J +∇q J
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Reduced Gradient via Adjoint Problem

Need to compute the reduced gradient

∇q I = −CT
qC−T

u ∇u J +∇q J

sensitivity approach

CT
qC−T

u =
(

C−1
u Cq

)T
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Reduced Gradient via Adjoint Problem

Need to compute the reduced gradient

∇q I = −CT
qC−T

u ∇u J +∇q J

sensitivity approach

CT
qC−T

u =
(

C−1
u Cq

)T

adjoint approach

CT
uλ = ∇u J
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One-Shot-Approach

Black-box steepest descent method:

Solve the flow equations (exactly)

Solve the adjoint equation (exactly) and compute the

(exact) reduced gradient based on the adjoint approach

Update design
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One-Shot-Approach

Black-box steepest descent method:

Solve the flow equations (exactly)

Solve the adjoint equation (exactly) and compute the

(exact) reduced gradient based on the adjoint approach

Update design

The idea of the one-shot-method

Based on neccessary optimality conditions

Solve all three equations simultaneously
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One-Shot-Method (1)

Define the Lagrangian functional:

L(u,q, λ) = J(u,q) + λ∗c(u,q).
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One-Shot-Method (1)

Define the Lagrangian functional:

L(u,q, λ) = J(u,q) + λ∗c(u,q).

Neccessary optimality conditions:





∇u L

∇q L

c



 = 0

← Adjoint equation

← Design equation

← State equation
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One-Shot-Method (1)

Define the Lagrangian functional:

L(u,q, λ) = J(u,q) + λ∗c(u,q).

Neccessary optimality conditions:





∇u L

∇q L

c



 = 0

← Adjoint equation

← Design equation

← State equation

Use Newton method to solve this system of nonlinear

equations!
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One-Shot-Method (2)

Newton-iteration uses KKT-Matrix:





Huu Huq C∗

u

Hqu Hqq C∗

q

Cu Cq 0









∆u

∆q

∆λ



 =





−∇u L

−∇q L

−c
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One-Shot-Method (2)

Newton-iteration uses KKT-Matrix:





Huu Huq C∗

u

Hqu Hqq C∗

q

Cu Cq 0









∆u

∆q

∆λ



 =





−∇u L

−∇q L

−c





KKT-Matrix approximated by rSQP-matrix:





0 0 A∗

0 B C∗

q

A Cq 0









∆u

∆q

∆λ



 =





−∇u L

−∇q L

−c





where A is some approximation of Cu.
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Appropriate choice of B

Exact reduced Hessian

Bex =

[

−C−1
u Cq

I

]T [

Huu Huq

Hqu Hqq

] [

−C−1
u Cq

I

]

“wrong” reduced Hessian

Binex =

[

−A−1Cq

I

]T [

Huu Huq

Hqu Hqq

] [

−A−1Cq

I

]

(similar to Bank/Welfert/Yserentant 1990)

B according to Griewank’s piggy-back concept.
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Theoretical Investigations — Definition of the

Quadratic Problem

Quadratic problem (QP):

min
u,q

1

2
uTHuuu +

1

2
qTHqqq + fTuu + fTqq

subject to Cuu + Cqq + c = 0.

with Cu invertible. Consider the Lagrangian:

L(u,q, λ) =
1

2
uTHuuu+

1

2
qTHqqq+fTuu+fTqq+λT(Cuu+Cqq+c).

Ilia Gherman, Volker Schulz

Efficient Methods for Aerodynamic Optimization



Theoretical Investigations — Convergence

Results

Theorem (Kunisch/Ito/Schulz/Gherman 2006)

There exists an η > 0, such that the iteration





uk+1

qk+1

λk+1



 =





uk

qk

λk



 −





0 0 AT

0 B CT
q

A Cq 0





−1 



∇u L

∇q L

∇λ L





converges to the solution of the (QP), provided

max{ρ(I − A−1Cu), ρ(I − B−1Binex)} < η

and Cu symmetric.

Proof: Nilpotency of degree 3 of the iteration matrix and

perturbation analysis.
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Drag Minimization of an RAE 2822 Airfoil

Flow equations: Euler flow

Flow-Solver: FLOWer, provided by DLR in forward and

adjoint mode (Gauger,. . . )

Minimize drag (constant profile thickness is preserved in

the parameterization of the airfoil)

Technique employed per iteration:

State/Adjoint: single iteration-steps provided by FLOWer

Design: rSQP-similar step:

∆q = −B−1
· γk

d where γk
d = C∗

q(A∗)−1J∗u,

γk
d is the current reduced gradient approximation

[Hazra/Schulz/Brezillon/Gauger 2005] and B approximates

the “wrong” reduced Hessian (BFGS-Updates based on

γd).
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Results – Unconstrained Optimization

Fast convergence (total effort < 4 simulations)

Drastic reduction of the drag . . .
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Results – Unconstrained Optimization

Fast convergence (total effort < 4 simulations)

Drastic reduction of the drag . . . but also almost total lost

of lift and pitching moment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

x/c

y

"Optimized"
Initial

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1.5

−1

−0.5

0

0.5

1

1.5

x/c

c p

"Optimized"
Initial

Ilia Gherman, Volker Schulz

Efficient Methods for Aerodynamic Optimization



Results – Unconstrained Optimization

Fast convergence (total effort < 4 simulations)

Drastic reduction of the drag . . . but also almost total lost

of lift and pitching moment
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−→ Neccessary: explicit formulation of aerodynamic

constraints

Ilia Gherman, Volker Schulz

Efficient Methods for Aerodynamic Optimization



State Constraints

min J(u,q)

subject to c(u,q) = 0

`(u,q) > 0 ← scalar Lift constraint

Lift depends also on the states and design variables.

The reduced gradient w.r.t lift

γ` =
d `

dq

can be computed by the solution of yet another adjoint problem :

γ` = ∇q ` − C∗

q(A∗)−1
∇u `
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State Constraints

min J(u,q)

subject to c(u,q) = 0

`(u,q) > 0 ← scalar Lift constraint, active

Lift depends also on the states and design variables.

The reduced gradient w.r.t lift

γ` =
d `

dq

can be computed by the solution of yet another adjoint problem :

γ` = ∇q ` − C∗

q(A∗)−1
∇u `
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State Constraints

min J(u,q)

subject to c(u,q) = 0

`(u,q) = 0 ← scalar Lift constraint

Lift depends also on the states and design variables.

The reduced gradient w.r.t lift

γ` =
d `

dq

can be computed by the solution of yet another adjoint problem :

γ` = ∇q ` − C∗

q(A∗)−1
∇u `
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One-Shot with Additonal State Constraints

New Lagrangian:

L(u,q, λ,µ) = J(u,q) + λ∗ c(u,q) + µ`(u,q).
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One-Shot with Additonal State Constraints

New Lagrangian:

L(u,q, λ,µ) = J(u,q) + λ∗ c(u,q) + µ`(u,q).

Iterates from:









0 0 0 A∗

0 B γ` C∗

q

0 γ∗

` 0 0

A Cq 0 0

















∆u

∆q

∆µ

∆λ









=









−∇uL

−∇qL

−`(u,q)

−c(u,q)
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One-Shot with Additonal State Constraints

New Lagrangian:

L(u,q, λ,µ) = J(u,q) + λ∗ c(u,q) + µ`(u,q).

Iterates from:









0 0 0 A∗

0 B γ` C∗

q

0 γ∗

` 0 0

A Cq 0 0

















∆u

∆q

∆µ

∆λ









=









−∇uL

−∇qL

−`(u,q)

−c(u,q)









−→ partially reduced SQP-method (approximate variant)
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Theoretical Investigations — Additional

Constraints

Add to the (QP) the constraint

hT
uu + hT

qq + h = 0.

Convergence of the iteration can be justified analogously to

the “unconstrained” theorem. Same conditions with

additionally

γ` = hq − CT
qA−Thu.
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Numerical results (1)

Minimize drag with constant lift constraint

Same setting as for the unconstrained optimization

Reduced gradients w.r.t. drag/lift are computet based on

the adjoint solutions after single-iteration steps by

FLOWer

Approximations of the reduced Hessian by

L-BFGS-updates based on the reduced gradients
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Numerical Results (2)
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Numerical Results (3)
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Numerical Results (3)
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Numerical Results (4)

Pressure Coefficient on the surface of the airfoil
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Numerical Results (5)

Airfoils
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Numerical Results (6)

L-BFGS-updates with m = 1, result:
optimization effort

simulation effort
< 7
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Conclusions and Further Research
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Conclusions and Further Research

Conclusions

One-shot optimization by use of approximate partially

reduced SQP approach

Reduced gradient and Hessian approximations should be

consistent with the state/costate solver iteration
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Conclusions and Further Research

Conclusions

One-shot optimization by use of approximate partially

reduced SQP approach

Reduced gradient and Hessian approximations should be

consistent with the state/costate solver iteration

Further Research

Adding viscosity in the flow equations (Navier-Stokes)

3D computations

Models contain parameters with unknown/uncertain

values⇒ robust optimization, stochastic approach
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