Efficient Methods for Aerodynamic Optimization

Ilia Gherman, Volker Schulz

University of Trier, MEGADESIGN-Project

DMV-Jahrestagung Bonn, September 2006

Ilia Gherman, Volker Schulz

- One-shot approach for unconstrained drag minimization and the choice of the reduced Hessian
- Extending the method to include state constraints
- Numerical results
- Conclusions

E

The MEGADESIGN-Project

- Supported by German Federal Ministry of Economics and Technology
- Main goal of the project : fast algorithms for geometric design of an aircraft

HIGHER DE

- Partners:
 - German Aerospace Center (DLR)
 - Airbus Germany
 - а.
 - .
 - 2
 - .
 - University of Trier Group of Volker Schulz

Ilia Gherman, Volker Schulz

Efficient Methods for Aerodynamic Optimization

Universität Tri

Research goal in Trier

Question

Is there a fast numerical approach for drag minimization with low relative complexity ?

Research goal in Trier

Question

Is there a fast numerical approach for drag minimization with low relative complexity ?

Difficulty

Constructing an optimization method from scratch is not viable

llia Gherman, Volker Schulz

Research goal in Trier

Question

Is there a fast numerical approach for drag minimization with low relative complexity ?

Difficulty

Constructing an optimization method from scratch is not viable

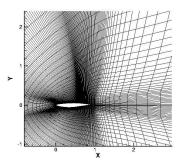
Aim

- Construct an optimization algorithm using existing simulation tools
- Overall effort: constant × simulation effort

Ilia Gherman, Volker Schulz

Optimization Problem without Addititional Constraints

 $\label{eq:generalized_states} \begin{array}{l} \mbox{min} & J(u,q) \\ \mbox{subject to} & c(u,q) = 0 \end{array}$



- J: the cost function (drag)
- c: Euler-flow equations
- \mathfrak{u} : state variable such that the Jacobian $C_{\mathfrak{u}}$ is invertible
- q: wing profile, parameterized by splines

Black-Box-Methods

Implicit function theorem:

$$\exists \ \mathfrak{u}: \mathbb{R}^{n_q} \to \mathbb{R}^{n_u}, q \mapsto \mathfrak{u}(q) \ : \ \forall \ q \ : \ c(\mathfrak{u}(q), q) = \mathbf{0}.$$

Black-Box-Methods

Implicit function theorem:

$$\exists \ \mathfrak{u}: \mathbb{R}^{n_q} \to \mathbb{R}^{n_u}, q \mapsto \mathfrak{u}(q) \ : \ \forall \ q \ : \ c(\mathfrak{u}(q), q) = \mathbf{0}.$$

Reduce the problem

min
$$J(u, q)$$

subject to $c(u, q) = 0$

to the unconstrained problem

min J(u(q), q) =: I(q)

Ilia Gherman, Volker Schulz

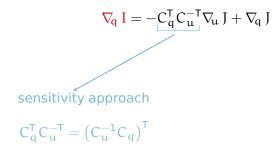
Reduced Gradient via Adjoint Problem

Need to compute the reduced gradient

$$\nabla_{\mathbf{q}} \mathbf{I} = -C_{\mathbf{q}}^{\mathsf{T}} C_{\mathbf{u}}^{-\mathsf{T}} \nabla_{\mathbf{u}} \mathbf{J} + \nabla_{\mathbf{q}} \mathbf{J}$$

Reduced Gradient via Adjoint Problem

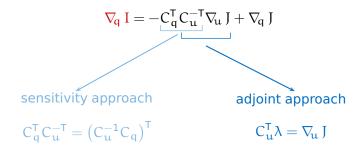
Need to compute the reduced gradient



Ilia Gherman, Volker Schulz

Reduced Gradient via Adjoint Problem

Need to compute the reduced gradient



Ilia Gherman, Volker Schulz

One-Shot-Approach

Black-box steepest descent method:

- Solve the flow equations (exactly)
 - Solve the adjoint equation (exactly) and compute the (exact) reduced gradient based on the adjoint approach
- –• Update design

One-Shot-Approach

Black-box steepest descent method:

- Solve the flow equations (exactly)
 - Solve the adjoint equation (exactly) and compute the (exact) reduced gradient based on the adjoint approach
- Update design

The idea of the one-shot-method

- Based on neccessary optimality conditions
- Solve all three equations simultaneously

Ilia Gherman, Volker Schulz

One-Shot-Method (1)

Define the Lagrangian functional:

$$\mathcal{L}(\mathbf{u}, \mathbf{q}, \lambda) = J(\mathbf{u}, \mathbf{q}) + \lambda^* c(\mathbf{u}, \mathbf{q}).$$

One-Shot-Method (1)

Define the Lagrangian functional:

$$\mathcal{L}(\mathfrak{u},\mathfrak{q},\lambda)=J(\mathfrak{u},\mathfrak{q})+\lambda^*c(\mathfrak{u},\mathfrak{q}).$$

Neccessary optimality conditions:

$$\begin{pmatrix} \nabla_{\!\!\! u}\, \mathcal{L} \\ \nabla_{\!\!\! q}\, \mathcal{L} \\ c \end{pmatrix} = 0$$

- ← Adjoint equation
- ← Design equation
- ← State equation

Ilia Gherman, Volker Schulz

One-Shot-Method (1)

Define the Lagrangian functional:

$$\mathcal{L}(\mathfrak{u},\mathfrak{q},\lambda)=J(\mathfrak{u},\mathfrak{q})+\lambda^*c(\mathfrak{u},\mathfrak{q}).$$

Neccessary optimality conditions:

$$\begin{pmatrix} \nabla_{\!\!\! u}\, \mathcal{L} \\ \nabla_{\!\!\! q}\, \mathcal{L} \\ c \end{pmatrix} = 0 \qquad \begin{array}{c} \leftarrow \ \ \text{Adjoint equation} \\ \leftarrow \ \ \text{Design equation} \\ \leftarrow \ \ \text{State equation} \\ \end{array}$$

Use Newton method to solve this system of nonlinear equations!

Ilia Gherman, Volker Schulz

One-Shot-Method (2)

Newton-iteration uses KKT-Matrix:

$$\begin{bmatrix} H_{uu} & H_{uq} & C_u^* \\ H_{qu} & H_{qq} & C_q^* \\ C_u & C_q & \mathbf{0} \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_u \, \mathcal{L} \\ -\nabla_q \, \mathcal{L} \\ -c \end{pmatrix}$$

One-Shot-Method (2)

Newton-iteration uses KKT-Matrix:

$$\begin{bmatrix} H_{uu} & H_{uq} & C_u^* \\ H_{qu} & H_{qq} & C_q^* \\ C_u & C_q & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_u \, \mathcal{L} \\ -\nabla_q \, \mathcal{L} \\ -c \end{pmatrix}$$

KKT-Matrix approximated by rSQP-matrix:

$$\begin{bmatrix} 0 & 0 & A^* \\ 0 & B & C^*_q \\ A & C_q & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_{\! u} \, \mathcal{L} \\ -\nabla_{\! q} \, \mathcal{L} \\ -c \end{pmatrix}$$

where A is some approximation of C_u .

Ilia Gherman, Volker Schulz

Appropriate choice of B

Exact reduced Hessian

$$B_{ex} = \begin{bmatrix} -C_u^{-1}C_q \\ I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} H_{uu} & H_{uq} \\ H_{qu} & H_{qq} \end{bmatrix} \begin{bmatrix} -C_u^{-1}C_q \\ I \end{bmatrix}$$

"wrong" reduced Hessian

$$B_{\text{inex}} = \begin{bmatrix} -A^{-1}C_{q} \\ I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} H_{uu} & H_{uq} \\ H_{qu} & H_{qq} \end{bmatrix} \begin{bmatrix} -A^{-1}C_{q} \\ I \end{bmatrix}$$

(similar to Bank/Welfert/Yserentant 1990)

• B according to Griewank's piggy-back concept.

llia Gherman, Volker Schulz

Theoretical Investigations — Definition of the Quadratic Problem

Quadratic problem (QP):

$$\min_{\mathbf{u},\mathbf{q}} \frac{1}{2} \mathbf{u}^{\mathsf{T}} \mathbf{H}_{\mathbf{u}\mathbf{u}} \mathbf{u} + \frac{1}{2} \mathbf{q}^{\mathsf{T}} \mathbf{H}_{\mathbf{q}\mathbf{q}} \mathbf{q} + \mathbf{f}_{\mathbf{u}}^{\mathsf{T}} \mathbf{u} + \mathbf{f}_{\mathbf{q}}^{\mathsf{T}} \mathbf{q}$$
subject to $C_{\mathbf{u}} \mathbf{u} + C_{\mathbf{q}} \mathbf{q} + \mathbf{c} = \mathbf{0}.$

with C_u invertible. Consider the Lagrangian:

$$\mathcal{L}(\mathbf{u},\mathbf{q},\lambda) = \frac{1}{2}\mathbf{u}^{\mathsf{T}}\mathsf{H}_{\mathbf{u}\mathbf{u}}\mathbf{u} + \frac{1}{2}\mathbf{q}^{\mathsf{T}}\mathsf{H}_{\mathbf{q}\mathbf{q}}\mathbf{q} + \mathbf{f}_{\mathbf{u}}^{\mathsf{T}}\mathbf{u} + \mathbf{f}_{\mathbf{q}}^{\mathsf{T}}\mathbf{q} + \lambda^{\mathsf{T}}(C_{\mathbf{u}}\mathbf{u} + C_{\mathbf{q}}\mathbf{q} + c).$$

Ilia Gherman, Volker Schulz

Efficient Methods for Aerodynamic Optimization

Universität Trie

Theoretical Investigations — Convergence Results

Theorem (Kunisch/Ito/Schulz/Gherman 2006)

There exists an $\eta > 0$, such that the iteration

$$\begin{pmatrix} u^{k+1} \\ q^{k+1} \\ \lambda^{k+1} \end{pmatrix} = \begin{pmatrix} u^{k} \\ q^{k} \\ \lambda^{k} \end{pmatrix} - \begin{bmatrix} 0 & 0 & A^{\mathsf{T}} \\ 0 & B & C^{\mathsf{T}}_{\mathsf{q}} \\ A & C_{\mathsf{q}} & 0 \end{bmatrix}^{-1} \begin{pmatrix} \nabla_{\!\!\!\! u} \,\mathcal{L} \\ \nabla_{\!\!\!\! q} \,\mathcal{L} \\ \nabla_{\!\!\! \lambda} \,\mathcal{L} \end{pmatrix}$$

converges to the solution of the (QP), provided

$$\text{max}\{\rho(I-A^{-1}C_{u})\text{, }\rho(I-B^{-1}B_{\text{inex}})\} < \eta$$

and C_u symmetric. **Proof**: Nilpotency of degree 3 of the iteration matrix and perturbation analysis.

Drag Minimization of an RAE 2822 Airfoil

- Flow equations: Euler flow
- Flow-Solver: FLOWer, provided by DLR in forward and adjoint mode (Gauger,...)
- Minimize drag (constant profile thickness is preserved in the parameterization of the airfoil)
- Technique employed per iteration:
 - State/Adjoint: single iteration-steps provided by FLOWer
 - Design: rSQP-similar step:

$$\Delta q = -B^{-1} \cdot \gamma_d^k \qquad \text{where } \gamma_d^k = C_q^* (A^*)^{-1} J_u^*,$$

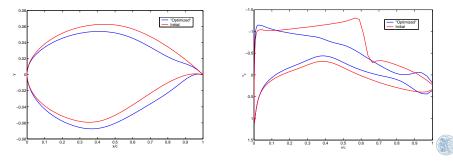
 γ_d^k is the current reduced gradient approximation [Hazra/Schulz/Brezillon/Gauger 2005] and B approximates the "wrong" reduced Hessian (BFGS-Updates based on γ_d).

Results – Unconstrained Optimization

- Fast convergence (total effort < 4 simulations)
- Drastic reduction of the drag ...

Results – Unconstrained Optimization

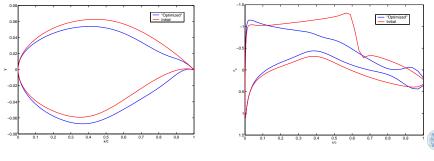
- Fast convergence (total effort < 4 simulations)
- Drastic reduction of the drag ... but also almost total lost of lift and pitching moment



Ilia Gherman, Volker Schulz

Results – Unconstrained Optimization

- Fast convergence (total effort < 4 simulations)
- Drastic reduction of the drag ... but also almost total lost of lift and pitching moment



\longrightarrow Neccessary: explicit formulation of aerodynamic constraints

Ilia Gherman, Volker Schulz

State Constraints

 $\begin{array}{rll} \mbox{min} & J(u,q) \\ \mbox{subject to} & c(u,q) = 0 \\ & & \ell(u,q) \geqslant 0 & & \leftarrow & \mbox{scalar Lift constraint} \end{array}$

Lift depends also on the states and design variables. The reduced gradient w.r.t lift

$$\gamma_{\ell} = \frac{\mathsf{d}\,\ell}{\mathsf{d}\,\mathsf{q}}$$

can be computed by the solution of yet another • adjoint problem:

$$\gamma_{\ell} = \nabla_{\!q} \,\ell - C_{q}^{*} (A^{*})^{-1} \nabla_{\!u} \,\ell$$

Universität Trie

Ilia Gherman, Volker Schulz

State Constraints

 $\begin{array}{ll} \mbox{min} & J(\mathfrak{u},\mathfrak{q}) \\ \mbox{subject to} & c(\mathfrak{u},\mathfrak{q}) = \mathbf{0} \\ & \ell(\mathfrak{u},\mathfrak{q}) \geqslant \mathbf{0} & \leftarrow & \mbox{scalar Lift constraint, active} \end{array}$

Lift depends also on the states and design variables. The reduced gradient w.r.t lift

$$\gamma_{\ell} = \frac{\mathsf{d}\,\ell}{\mathsf{d}\,\mathsf{q}}$$

can be computed by the solution of yet another • adjoint problem :

$$\gamma_{\ell} = \nabla_{\!q} \,\ell - C_{q}^{*} (A^{*})^{-1} \nabla_{\!u} \,\ell$$

Universität Trie

Ilia Gherman, Volker Schulz

State Constraints

 $\begin{array}{ll} \mbox{min} & J(u,q) \\ \mbox{subject to} & c(u,q) = 0 \\ & \ell(u,q) = 0 & \leftarrow & \mbox{scalar Lift constraint} \end{array}$

Lift depends also on the states and design variables. The reduced gradient w.r.t lift

$$\gamma_{\ell} = \frac{\mathsf{d}\,\ell}{\mathsf{d}\,\mathsf{q}}$$

can be computed by the solution of yet another $\$ adjoint problem :

$$\gamma_{\ell} = \nabla_{\!q} \,\ell - C_{q}^{*} (A^{*})^{-1} \nabla_{\!u} \,\ell$$

Universität Trie

Ilia Gherman, Volker Schulz

One-Shot with Additonal State Constraints

New Lagrangian:

$$\label{eq:Lagrangian} \begin{split} \mathcal{L}(u,q,\lambda,\mu) = J(u,q) + \lambda^* \, c(u,q) + \mu \ell(u,q). \end{split}$$

One-Shot with Additonal State Constraints

New Lagrangian:

$$\mathcal{L}(\mathfrak{u},\mathfrak{q},\lambda,\mu) = J(\mathfrak{u},\mathfrak{q}) + \lambda^* \, c(\mathfrak{u},\mathfrak{q}) + \mu \ell(\mathfrak{u},\mathfrak{q}).$$

Iterates from:

$$\begin{bmatrix} 0 & 0 & 0 & A^* \\ 0 & B & \gamma_{\ell} & C_q^* \\ 0 & \gamma_{\ell}^* & 0 & 0 \\ A & C_q & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \mu \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_{\! u} \mathcal{L} \\ -\nabla_{\! q} \mathcal{L} \\ -\ell(u,q) \\ -c(u,q) \end{pmatrix}$$

Ilia Gherman, Volker Schulz

One-Shot with Additonal State Constraints

New Lagrangian:

$$\mathcal{L}(\mathfrak{u},\mathfrak{q},\lambda,\mu) = J(\mathfrak{u},\mathfrak{q}) + \lambda^* \, c(\mathfrak{u},\mathfrak{q}) + \mu \ell(\mathfrak{u},\mathfrak{q}).$$

Iterates from:

$$\begin{bmatrix} 0 & 0 & 0 & A^* \\ 0 & B & \gamma_\ell & C_q^* \\ 0 & \gamma_\ell^* & 0 & 0 \\ A & C_q & 0 & 0 \end{bmatrix} \begin{pmatrix} \Delta u \\ \Delta q \\ \Delta \mu \\ \Delta \lambda \end{pmatrix} = \begin{pmatrix} -\nabla_{\!\! u} \mathcal{L} \\ -\nabla_{\!\! q} \mathcal{L} \\ -\ell(u,q) \\ -c(u,q) \end{pmatrix}$$

 \longrightarrow partially reduced SQP-method (approximate variant)

Ilia Gherman, Volker Schulz

Theoretical Investigations — Additional Constraints

Add to the • (QP) the constraint

$$\mathbf{h}_{\mathbf{u}}^{\mathsf{T}}\mathbf{u} + \mathbf{h}_{\mathsf{q}}^{\mathsf{T}}\mathbf{q} + \mathbf{h} = \mathbf{0}.$$

Convergence of the iteration can be justified analogously to the "unconstrained" theorem. Same conditions with additionally

$$\gamma_{\ell} = h_q - C_q^{\mathsf{T}} A^{-\mathsf{T}} h_u.$$

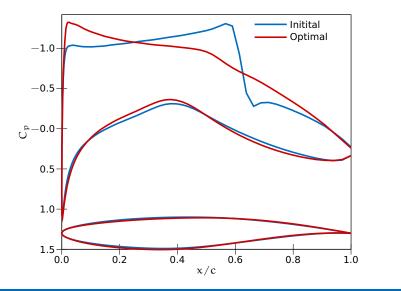
Ilia Gherman, Volker Schulz

Numerical results (1)

- Minimize drag with constant lift constraint
- Same setting as for the unconstrained optimization
- Reduced gradients w.r.t. drag/lift are computet based on the adjoint solutions after single-iteration steps by FLOWer
- Approximations of the reduced Hessian by L-BFGS-updates based on the reduced gradients

llia Gherman, Volker Schulz

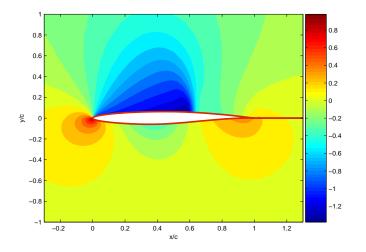
Numerical Results (2)



Universität Trier

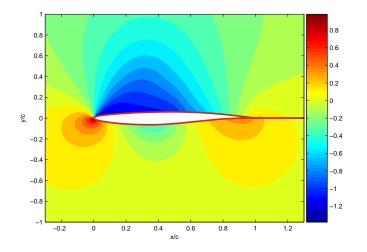
Ilia Gherman, Volker Schulz

Numerical Results (3)



Ilia Gherman, Volker Schulz

Numerical Results (3)

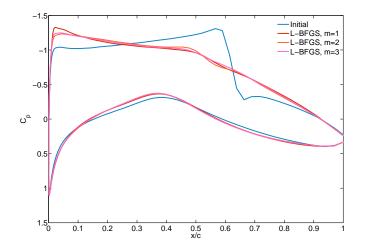


Iniversität Trier

Ilia Gherman, Volker Schulz

Numerical Results (4)

Pressure Coefficient on the surface of the airfoil

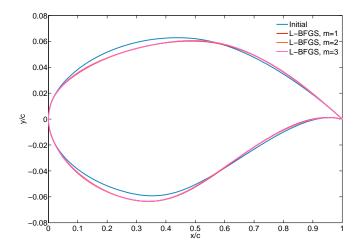


Iniversität Trier

Ilia Gherman, Volker Schulz

Numerical Results (5)

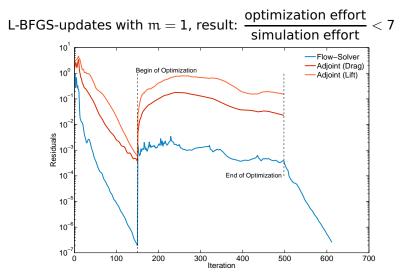
Airfoils



Iniversität Trier

Ilia Gherman, Volker Schulz

Numerical Results (6)



Ilia Gherman, Volker Schulz

Conclusions and Further Research

Conclusions and Further Research

Conclusions

- One-shot optimization by use of approximate partially reduced SQP approach
- Reduced gradient and Hessian approximations should be consistent with the state/costate solver iteration

Conclusions and Further Research

Conclusions

- One-shot optimization by use of approximate partially reduced SQP approach
- Reduced gradient and Hessian approximations should be consistent with the state/costate solver iteration

Further Research

- Adding viscosity in the flow equations (Navier-Stokes)
- 3D computations
- Models contain parameters with unknown/uncertain values ⇒ robust optimization, stochastic approach

Ilia Gherman, Volker Schulz