High Energy limits of Dirac type eigenfunctions

A. Strohmaier (joint work with D. Jakobson)

DMV Tagung 2006

A. Strohmaier (joint work with D. Jakobson) High Energy limits of Dirac type eigenfunctions

Quantum ergodicity

2 The Problem

Laplace type and Dirac type Operators

3 The Solution

- Frame flows
- The *p*-form Laplacian and the *k*-frame flow
- The Dirac operator and the frame flow

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Quantum ergodicity

Motivation

Theorem (Shnirelman, C. de Verdiere, Zelditch)

Let X be a compact Riemannian manifold and let ϕ_i be an orthonormal sequence in $L^2(X)$ consisting of eigenfunctions. If the geodesic flow on T_1^*X is ergodic there is a subsequence ϕ'_j of counting density one such that

$$|\phi_j'(\mathbf{x})|^2
ightarrow 1$$

in the weak topology of measures. (Ergodicity implies Quantum Ergodicity)

・ロ・・ 日本・ ・ 日本・

Quantum ergodicity

Microlocal version

Theorem (Shnirelman, C. de Verdiere, Zelditch)

Let X be a compact Riemannian manifold and let ϕ_i be an orthonormal sequence in $L^2(X)$ consisting of eigenfunctions. If the geodesic flow on T_1^*X is ergodic there is a subsequence ϕ'_j of counting density one such that

$$\langle \phi'_j, \mathcal{A}\phi'_j \rangle \to \int_{\mathcal{T}_1^* X} \sigma_{\mathcal{A}}(\xi) d\mathcal{L}(\xi)$$

for all $A \in \Psi DO^0_{cl}(X)$. (Ergodicity implies microlocal Quantum Ergodicity)

・ロ・ ・ 四・ ・ 回・ ・ 日・

Laplace type and Dirac type Operators

・ロ・ ・ 四・ ・ 回・ ・ 回・

Bundle valued operators

- Question: what about bundle valued operators like the Laplace Beltrami operator or the Dirac operators on a spin manifold. The situation is slightly different:
- One cannot expect a direct analog to hold. Eg. coclosed and closed eigen-*p*-forms give rise to different quantum limits.
- the relevant algebra of pseudodifferential operators is $\frac{\Psi DO_{cl}^{0}(X, E)}{\Psi DO_{cl}^{0}(X, E)}$ quantum limits are the states on $\overline{\Psi DO_{cl}^{0}(X, E)}/\mathcal{K} \cong C(T_{1}^{*}X, \pi^{*}(End(E)))$ which is a noncommutative *C**-algebra.

Laplace type and Dirac type Operators

Bundle valued operators

- Question: what about bundle valued operators like the Laplace Beltrami operator or the Dirac operators on a spin manifold. The situation is slightly different:
- One cannot expect a direct analog to hold. Eg. coclosed and closed eigen-*p*-forms give rise to different quantum limits.

• the relevant algebra of pseudodifferential operators is $\frac{\Psi DO_{cl}^{0}(X, E)}{\Psi DO_{cl}^{0}(X, E)}$ quantum limits are the states on $\overline{\Psi DO_{cl}^{0}(X, E)}/\mathcal{K} \cong C(T_{1}^{*}X, \pi^{*}(End(E)))$ which is a noncommutative *C**-algebra.

Laplace type and Dirac type Operators

Bundle valued operators

- Question: what about bundle valued operators like the Laplace Beltrami operator or the Dirac operators on a spin manifold. The situation is slightly different:
- One cannot expect a direct analog to hold. Eg. coclosed and closed eigen-*p*-forms give rise to different quantum limits.
- the relevant algebra of pseudodifferential operators is $\frac{\Psi DO_{cl}^{0}(X, E)}{\Psi DO_{cl}^{0}(X, E)}$ quantum limits are the states on $\overline{\Psi DO_{cl}^{0}(X, E)}/\mathcal{K} \cong C(T_{1}^{*}X, \pi^{*}(End(E)))$ which is a noncommutative *C**-algebra.

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

Ergodicity of frame flows

Let *FX* be the frame bundle and let $p: FX \to T_1^*X$ be the projection onto the first vector. The geodesic flow extends by parallel translation to a flow on *FX*, the frame flow. If *X* is negatively curved with sectional curvatures satisfying $-K_2^2 \leq K \leq -K_1^2$. The frame flow is known to be ergodic

- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C³ topology) (Brin 75);
- if *n* is odd, but not equal to 7 (Brin-Gromov 80); or if *n* = 7 and *K*₁/*K*₂ > 0.99023... (Burns-Pollicot 03);

 if *n* is even, but not equal to 8, and *K*₁/*K*₂ > 0.93, (Brin-Karcher 84); or if *n* = 8 and *K*₁/*K*₂ > 0.99023... (Burns-Pollicot 03).

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

Ergodicity of frame flows

Let *FX* be the frame bundle and let $p : FX \to T_1^*X$ be the projection onto the first vector. The geodesic flow extends by parallel translation to a flow on *FX*, the frame flow. If *X* is negatively curved with sectional curvatures satisfying $-K_2^2 \le K \le -K_1^2$. The frame flow is known to be ergodic

- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C³ topology) (Brin 75);
- if *n* is odd, but not equal to 7 (Brin-Gromov 80); or if *n* = 7 and *K*₁/*K*₂ > 0.99023... (Burns-Pollicot 03);

 if *n* is even, but not equal to 8, and *K*₁/*K*₂ > 0.93, (Brin-Karcher 84); or if *n* = 8 and *K*₁/*K*₂ > 0.99023... (Burns-Pollicot 03).

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

Ergodicity of frame flows

Let *FX* be the frame bundle and let $p : FX \to T_1^*X$ be the projection onto the first vector. The geodesic flow extends by parallel translation to a flow on *FX*, the frame flow. If *X* is negatively curved with sectional curvatures satisfying $-K_2^2 \le K \le -K_1^2$. The frame flow is known to be ergodic

- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C³ topology) (Brin 75);
- if *n* is odd, but not equal to 7 (Brin-Gromov 80); or if *n* = 7 and *K*₁/*K*₂ > 0.99023... (Burns-Pollicot 03);

• if *n* is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if *n* = 8 and $K_1/K_2 > 0.99023...$ (Burns-Pollicot 03).

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

Ergodicity of frame flows

Let *FX* be the frame bundle and let $p : FX \to T_1^*X$ be the projection onto the first vector. The geodesic flow extends by parallel translation to a flow on *FX*, the frame flow. If *X* is negatively curved with sectional curvatures satisfying $-K_2^2 \le K \le -K_1^2$. The frame flow is known to be ergodic

- if X has constant curvature (Brin 76, Brin-Pesin 74);
- for an open and dense set of negatively curved metrics (in the C³ topology) (Brin 75);
- if *n* is odd, but not equal to 7 (Brin-Gromov 80); or if *n* = 7 and *K*₁/*K*₂ > 0.99023... (Burns-Pollicot 03);
- if *n* is even, but not equal to 8, and $K_1/K_2 > 0.93$, (Brin-Karcher 84); or if n = 8 and $K_1/K_2 > 0.99023...$ (Burns-Pollicot 03).

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

Quantum ergodicity for the *p*-form Laplacian

Consider the following restricted system on *p*-forms which form an ONB in $ker(\delta)$.

 $\Delta_{\boldsymbol{\rho}}\phi_j = \lambda_j\phi_j,$ $\delta\phi_j = \mathbf{0}.$

Theorem (JS)

If $p \neq \frac{n-1}{2}$ and the $2\min(p, n-p)$ -frame-flow is ergodic, then there is a density one subsequence ϕ'_k that converges to a state ω_{∞} on $C(T_1^*X, \pi^*End(\Lambda^pX))$.

$$\omega_{\infty}(\mathbf{a}) := \binom{n-1}{p}^{-1} \int_{\mathcal{T}_{1}^{*}X} \operatorname{tr}\left(i(\xi)i^{*}(\xi)\mathbf{a}(\xi)\right) dL(\xi),$$

A. Strohmaier (joint work with D. Jakobson)

High Energy limits of Dirac type eigenfunctions

.⊒ . >

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

・ロ・ ・ 四・ ・ 回・ ・ 回・

Quantum ergodicity for the *p*-form Laplacian

If $p = \frac{n-1}{2}$ there is a further symmetry $\delta *$ and we need a further constraint $i^{p+1}\delta * \phi_k = \pm \sqrt{\lambda_k}\phi_k$. With this further constraint Quantum ergodicity holds!

This is the case in dimension 3 for 1-forms, i.e. for

electrodynamics in the physical dimension and is due to circular polarizations.

Frame flows The *p*-form Laplacian and the *k*-frame flow The Dirac operator and the frame flow

Quantum ergodicity for the Dirac operator

Theorem (JS)

Let X be a spin manifold with spinor bundle S and Dirac operator D. Let ϕ_j be an ONB in the positive energy subspace of D in $L^2(X; S)$ of eigensections. Then, if the frame flow is ergodic there is a density one subsequence ϕ'_j that converges to a state ω_+ on $C(T_1^*X, \pi^*End(S))$.

$$\omega_+(\boldsymbol{a}) = \frac{1}{2^{\lfloor \frac{n}{2} \rfloor}} \int_{\mathcal{T}_1^* X} \operatorname{tr}((1 + \gamma(\xi)) \boldsymbol{a}(\xi)) \boldsymbol{d}L(\xi).$$

- Since the high energy limit is noncommutative it is "quantum" and shows some new features. For example ergodic decompositions are not unique (may split Dirac into chiral parts as well).
- Conclusion of the theorem is not true for negatively curved Kähler manifolds even though the geodesic flow is ergodic (frame flow is not).
- Ergodic decomposition of the frame flow has a quantum counterparts. (no anomalies yet).

- Since the high energy limit is noncommutative it is "quantum" and shows some new features. For example ergodic decompositions are not unique (may split Dirac into chiral parts as well).
- Conclusion of the theorem is not true for negatively curved Kähler manifolds even though the geodesic flow is ergodic (frame flow is not).
- Ergodic decomposition of the frame flow has a quantum counterparts. (no anomalies yet).

- Since the high energy limit is noncommutative it is "quantum" and shows some new features. For example ergodic decompositions are not unique (may split Dirac into chiral parts as well).
- Conclusion of the theorem is not true for negatively curved Kähler manifolds even though the geodesic flow is ergodic (frame flow is not).
- Ergodic decomposition of the frame flow has a quantum counterparts. (no anomalies yet).