Normally hyperbolic operators on Lorentzian manifolds and their quantization

Nicolas Ginoux

joint work with C. Bär and F. Pfäffle

Bonn, September 22nd, 2006

Aim: quantize the fields coming from the *wave* equation.

1. Well-known facts

Let (M^n, g) be a timeoriented Lorentzian manifold (*spacetime*), let $E \to M$ be a \mathbb{R} -vector bundle.

Definition 1 A normally hyperbolic operator on E is a 2^{nd} -order differential operator P on E of the form

 $P := \nabla^* \nabla + B,$

where

 ∇ is a connection on E $B \in C^{\infty}(M, \operatorname{End}(E)).$

Ex.: d'Alembert \Box , (Dirac)².

Definition 2 Let P be a normally-hyperbolic operator on E. The wave-equation associated to P is

Pu = f

for a given $f \in C^{\infty}(M, E)$ (and with conditions on supp(u)).

Definition 3 A (connected) spacetime (M,g)is called globally hyperbolic iff it contains a smooth spacelike Cauchy-hypersurface S

[every inextendible timelike curve in M meets S exactly once].

 $(\iff (M,g) \cong (\mathbb{R} \times S, -\beta dt^2 \oplus g_t)$ with smooth $\beta : M \to \mathbb{R}^*_+$, smooth 1-parameter family of Riemannian metrics g_t on S, and each $\{t\} \times S$ is a spacelike Cauchy hypersurface in M.)

Ex.: $(M,g) := (I \times S, -dt^2 \oplus f(t)^2 g_0)$ where $f : I \to \mathbb{R}^*_+$ smooth and (S,g_0) complete Riemannian manifold

 \Rightarrow Minkowski, Robertson-Walker, deSitter spacetimes are globally hyperbolic.

C.-ex.: compact spacetimes, Anti-deSitter spacetime

$$(M,g) := (\mathbb{R} \times S^{n-1}_+, \frac{1}{x_n^2}(-dt^2 \oplus \operatorname{can}_{S^{n-1}_+})).$$

Theorem 4 Let M be a globally hyperbolic spacetime and let $S \subset M$ be a smooth spacelike <u>Cauchy hypersurface</u> with future-directed (timelike) unit normal vector field ν .

i) $\forall (f, u_0, u_1) \in \mathcal{D}(M, E) \oplus \mathcal{D}(S, E) \oplus \mathcal{D}(S, E),$ $\exists ! u \in C^{\infty}(M, E) \ s.t.$

$$Pu = f$$

$$u_{|S} = u_0$$

$$\nabla_{\nu}u = u_1.$$
(1)

Moreover, $supp(u) \subset J^M_+(K) \cup J^M_-(K)$ where $K := supp(u_0) \cup supp(u_1) \cup supp(f)$.

ii) $\mathcal{D}(M, E) \oplus \mathcal{D}(S, E) \oplus \mathcal{D}(S, E) \longrightarrow C^{\infty}(M, E)$ $(f, u_0, u_1) \longmapsto u,$

where $u \in C^{\infty}(M, E)$ is the solution of (1), is linear continuous.

Definition 5 A linear map

 $G_{\pm}: \mathcal{D}(M, E) \to C^{\infty}(M, E)$

is called advanced (+) *resp.* retarded (-) *Green's operator for P iff it satisfies:*

i)
$$P \circ G_{\pm} = \operatorname{id}_{\mathcal{D}(M,E)}$$
.

ii) $G_{\pm} \circ P_{\mid_{\mathcal{D}(M,E)}} = \mathrm{id}_{\mathcal{D}(M,E)}.$

iii) $\operatorname{supp}(G_{\pm}\varphi) \subset J^M_{\pm}(\operatorname{supp}(\varphi))$ for all $\varphi \in \mathcal{D}(M, E)$.

Theorem 6 For any globally hyperbolic spacetime M and any normally-hyperbolic operator P there exist unique advanced and retarded Green's operators G_+ and G_- for P. They satisfy:

• If $P = P^*$ then $(G_{\pm})^* = G_{\mp}$.

• The sequence

 $0 \to \mathcal{D}(M, E) \xrightarrow{P} \mathcal{D}(M, E) \xrightarrow{G} C^{\infty}_{SC}(M, E) \xrightarrow{P} C^{\infty}_{SC}(M, E)$ is an exact complex, where $G := G_{+} - G_{-}$.

2. Quantization functors

2.1 Categories

Category	Objects	Morphisms
GlobHyp	(M, E, P) where	(f,F) with
	$ E \to M$ (real) v.b.	a) $E_1 \xrightarrow{F} E_2$
	with <i>indef.</i> $\langle \cdot , \cdot angle$	$M_1 \xrightarrow{f} M_2$
	⁻ Pnorm. hyp. op.	b) $\mathcal{D}(M_1, E_1) \xrightarrow{\text{ext}} \mathcal{D}(M_2, E_2)$
		P_1 P_2
	and form. sa.	$\mathcal{D}(M_1, E_1) \xrightarrow{ext} \mathcal{D}(M_2, E_2)$
LorFund	(M, E, P, G_{\pm})	- M_1 glob. hyp. \Rightarrow as above
	with $(G_{\pm})^* = G_{\mp}$	- M_1 not glob. hyp. \Rightarrow
		$arnothing$ or $\{(id_{M_1},id_{E_1})\}$
SymplVec	(V, ω)	symplectomorphisms
C [*] -Alg	$(A, \ \cdot\ , *)$	C^* -algmorphisms
	with 1	inj., preserving 1

2.2 Functors

• Functor SOLVE : $GlobHyp \longrightarrow LorFund$: $\begin{vmatrix} SOLVE(M, E, P) & := (M, E, P, G_{\pm}) \\ SOLVE(f, F) & := (f, F) \end{vmatrix}$

• Functor SYMPL : LorFund \longrightarrow SymplVec:

 $\begin{vmatrix} \mathsf{SYMPL}(M, E, P, G_{\pm}) & := (\mathcal{D}(M, E) / \mathsf{ker}(G), \int_{M} \langle G \cdot, \cdot \rangle dv_{g}) \\ \mathsf{SYMPL}(f, F) & := \overline{\mathsf{ext}} \\ \mathsf{where} \ \overline{\mathsf{ext}} : \mathcal{D}(M_{1}, E_{1}) / \mathsf{ker}(G_{1}) \to \mathcal{D}(M_{2}, E_{2}) / \mathsf{ker}(G_{2}). \end{vmatrix}$

• Functor CCR : SymplVec $\longrightarrow C^* Alg$:

$$\begin{array}{ll} \mathsf{CCR}(V,\omega) & := \mathsf{CCR} \text{ repr. of } (V,\omega) \\ \mathsf{CCR}(\mathcal{S}) & := \widetilde{\mathcal{S}} \end{array}$$

where

$$\begin{array}{c} \mathsf{CCR}(V_1,\omega_1) \stackrel{\widetilde{\mathcal{S}}}{\longrightarrow} \mathsf{CCR}(V_2,\omega_2) \\ \stackrel{W_1 \uparrow}{\longrightarrow} V_1 \stackrel{\uparrow W_2}{\longrightarrow} V_2 \end{array}$$

7

* Here $CCR(V, \omega) := C^*(\{W(\varphi), \varphi \in V\})$, where the map $W : V \longrightarrow \mathcal{L}(L^2(V, \mathbb{C}))$ is defined by

$$(W(\varphi)F)(\psi) := e^{i \frac{\omega(\varphi,\psi)}{2}}F(\varphi+\psi)$$

for all $F \in L^2(V, \mathbb{C})$ and $\varphi, \psi \in V$.

- * W is a Weyl system for (V, ω) , i.e., W(0) = 1, $W(-\varphi) = W(\varphi)^*$ and $W(\varphi + \psi) = e^{i\frac{\omega(\varphi,\psi)}{2}}W(\varphi) \cdot W(\psi)$.
- * W is the "smallest" Weyl system: $\begin{array}{c} \mathsf{CCR}(V,\omega) \\ & \bigvee \\ V \xrightarrow{W} & \downarrow \exists ! \\ V \xrightarrow{W_1} & A \end{array}$

Theorem 7 Those functors are well-defined.

GlobHyp SymplVec ^{CCR} C*-Alg SOLVE SYMPL LorFund