Surgery and harmonic spinors

B. Ammann¹ M. Dahl² E. Humbert¹

¹Institut Élie Cartan Université Henri Poincaré, Nancy France

²Institutionen för Matematik Kungliga Tekniska Högskolan, Stockholm Sweden

DMV-Tagung Bonn, 2006

Outline

Preliminaries

The Dirac operator Atiyah-Singer index theorem

Generic metrics are D-minimal

D-minimal metrics D-minimality theorem History of partial solutions Kähler manifolds and other generalized Dirac operators

The surgery method

Surgery Scalar curvature and surgery *D*-minimality and surgery D-surgery thm implies D-minimality thm Proof of D-surgery theorem

The tau-invariant

Definition Monotonicity

The Dirac operator

Let *M* be a (fixed) compact manifold with spin structure, $n = \dim M$.

For any metric g on M one defines

- ► the *spinor bundle* $\Sigma_g M$: a vector bundle with a metric, a connection and Clifford multiplication $TM \otimes \Sigma_g M \rightarrow \Sigma_g M$.
- ► the *Dirac operator* $D_g : \Gamma(\Sigma_g M) \to \Gamma(\Sigma_g M)$: a self-adjoint elliptic differential operator of first order.
- \implies dim ker D_g is finite-dimensional.

The elements of ker D_g are called harmonic spinors.

Dirac operator and conformal change

Hitchin 1974: If $\tilde{g} = f^2 g$, then one can identify $\Sigma_g M$ with $\Sigma_{\tilde{g}} M$ such that

$$D_{\widetilde{g}}=f^{-\frac{n+1}{2}}D_{g}f^{\frac{n-1}{2}}.$$

Hence

dim ker D_g

is conformally invariant.

Lichnerowicz formula

$$\int_{M} |D\psi|^{2} = \int_{M} |\nabla\psi|^{2} + \frac{1}{4} \int_{M} \operatorname{scal} |\psi|^{2}$$

Hence scal > 0 implies ker $D = \{0\}$.

Atiyah-Singer Index Theorem for n = 4k

Let
$$n = 4k$$
. $\Sigma_g M = \Sigma_g^+ M \oplus \Sigma_g^- M$. $D_g = \begin{pmatrix} 0 & D_g^- \\ D_g^+ & 0 \end{pmatrix}$

ind $D_g^+ = \dim \ker D_g^+ - \operatorname{codim} \operatorname{im} D_g^+ = \dim \ker D_g^+ - \dim \ker D_g^-$

Theorem (Atiyah-Singer 1968)

ind
$$D_g^+ = \int_M \widehat{A}(TM)$$

ice: dim ker $D_g \ge |\int \widehat{A}(TM)|$

Index Theorem for n = 8k + 1 and 8k + 2

$$n = 8k + 1$$
:
 $\alpha(M) := \dim \ker D_g \mod 2$
 $n = 8k + 2$:
 $\alpha(M) := \frac{\dim \ker D_g}{2} \mod 2$

 $\alpha(M)$ is independent of *g*. However, $\alpha(M)$ depends on the choice of spin structure.

D-minimal metrics

We summarize:

dim ker
$$D^g \ge \begin{cases} |\int \widehat{A}(TM)|, & \text{if } n = 4k; \\ 1, & \text{if } n \equiv 1 \mod 8 \text{ and } \alpha(M) \neq 0; \\ 2, & \text{if } n \equiv 2 \mod 8 \text{ and } \alpha(M) \neq 0; \\ 0, & \text{otherwise.} \end{cases}$$

A metric is called *D-minimal* if we have equality.

Theorem (*D*-minimality theorem, ADH 2006) Generic metrics on connected compact spin manifolds are *D*-minimal.

Generic = dense in C^{∞} -topology and open in C^{1} -topology.

The investigations for this result were initiated by Hitchin (1974). The theorem was explicitly conjectured by Bär-Dahl (2002).

History of partial solutions

In order to show that generic metrics are *D*-minimal, if suffices to show that one *D*-minimal metric exists.

- Hitchin (1974): dim ker D_g depends on g.
- Maier (1996) proved the theorem if

$$n = \dim M \le 4.$$

Bär-Dahl (2002) proved the theorem when

$$n \ge 5$$
 and $\pi_1(M) = \{e\}.$

They use the surgery method which has already turned out to be useful in the construction of manifolds with positive scalar curvature (Gromov-Lawson 1980, Stolz 1992).

Our proof (ADH 2006) also uses the surgery method. It works under no restriction on *n* or π₁.

Large kernel conjecture

Conjecture

Let dim $M \ge 3$. For any $k \in \mathbb{N}$ there is a metric g_k with dim ker $D \ge k$.

This conjecture has been proved by

- *Hitchin 1974* on $M = S^3$ for any $k \in \mathbb{N}$,
- *Hitchin 1974* in dimensions $n \equiv 0, 1, 7 \mod 8$ for k = 1,
- Bär 1996 in dimensions $n \equiv 3,7 \mod 8$ for k = 1,
- Seeger 2000 on S^{2m} , $m \ge 2$, for k = 1,
- *Dahl 2006* on S^n , $n \ge 5$, for k = 1.

Many open cases!

Comparison to Kähler manifolds

Let (M, g) be Kähler.

A spin structure corresponds to a square root *L* of the canonical bundle.

The Dirac operator on (M, g) coincides with the Dolbeault $\bar{\partial} + \bar{\partial}^*$ acting on (0, *)-forms twisted by *L*.

Kotschick (1996) constructs complex manifolds M, on which **generic Kähler metrics** are **not** D-minimal.

Comparison to other generalized Dirac operators: Gauss-Bonnet-Chern operator

n even

$$\Lambda^* T^* M = \Lambda^{even} T^* M \oplus \Lambda^{odd} T^* M$$
$$d + d_g^* = \begin{pmatrix} 0 & (d + d_g^*)^{odd} \\ (d + d_g^*)^{even} & 0 \end{pmatrix}$$
$$\dim \ker (d + d_g^*)^{even} = \sum_{i \text{ even}} b_i, \qquad \dim \ker (d + d_g^*)^{odd} = \sum_{i \text{ odd}} b_i,$$

ind
$$(d + d_g^*)^{even} = \sum_{i=0}^n (-1)^i b_i = \chi(M)$$

$$\dim \ker(d+d_g^*) = \sum_{i=0}^n b_i$$

If $\sum_{i=0}^{n} b_i > \chi(M)$, then no metric is " $d + d^*$ -minimal".

Signature Operator

n = 4k

$$\Lambda^* T^* M = \Lambda^+ T^* M \oplus \Lambda^- T^* M$$

Splitting according to

$$egin{aligned} \epsilon &= i^{rac{n}{2}+
ho(
ho-1)}*:\ \Gamma(\Lambda^{
ho}_{\mathbb{C}}T^*M) &
ightarrow \Gamma(\Lambda^{n-
ho}_{\mathbb{C}}T^*M). \ d+d^*_g &= egin{pmatrix} 0 & (d+d^*_g)^- \ (d+d^*_g)^+ & 0 \end{pmatrix} \end{aligned}$$

Let $b_{n/2}^+$ (resp. $b_{n/2}^-$) be the number of positive (resp. negative) eigenvalues of the intersection form

$$H^{n/2}(M,\mathbb{R}) \times H^{n/2}(M,\mathbb{R}) \to \mathbb{R}.$$

Then $b_{n/2}^+ + b_{n/2}^- = b_{n/2}$.

Signature Operator (cont.)

$$\dim \ker(d + d_g^*)^+ = b_{n/2}^+ + \sum_{i=0}^{(n/2)-1} b_i,$$

$$\dim \ker(d + d_g^*)^- = b_{n/2}^- + \sum_{i=0}^{(n/2)-1} b_i.$$

$$\operatorname{ind} (d + d_g^*)^+ = b_{n/2}^+ - b_{n/2}^- = \operatorname{sign}(M)$$

$$\dim \ker(d + d_g^*) = \sum_{i=0}^n b_i$$

Then no metric is "minimal", unless $b_i = 0$ for all $i \neq n/2$ and $b_{n/2}^{\pm} = 0$.

Surgery

Let $f: S^k \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding. We define

$$M^{\#} := M \setminus f(S^k \times B^{n-k}) \cup (B^{k+1} \times S^{n-k-1}) / \sim$$

where $/\sim$ means gluing the boundaries via

$$M
i f(x,y) \sim (x,y) \in S^k \times S^{n-k-1}$$

We say that $M^{\#}$ is obtained from *M* by surgery of dimension *k*.

Example: 0-dimensional surgery on a surface.

Scalar curvature and surgery

Theorem (Gromov-Lawson 1980)

Let $k \le n - 3$. If *M* carries a metric of positive scalar curvature, then $M^{\#}$ carries a metric of positive scalar curvature as well. Strong consequences, in particular if $\pi_1 = \{e\}$.

Gromov-Lawson fails for k = n - 2 as $S^1 = S^{n-k-1}$ has scalar curvature 0.

D-minimality and surgery

Theorem (D-Surgery Theorem, ADH 2006)

Let $k \le n - 2$. If *M* carries a *D*-minimal metric, then $M^{\#}$ carries a *D*-minimal metric as well. Bär-Dahl (2002) proved the theorem with other methods for

 $k \leq n-3$.

Proof of "*D*-surgery Thm \implies *D*-minimality Thm"

We use a theorem from Stolz 1992.

The given spin manifold *M* is bordant to $N \cup P$, where

- P carries a metric of positive scalar curvature,
- *N* is a disjoint union of products of *S*¹, a *K*3-surface and a Bott manifold, and carries a *D*-minimal metric.

Perform surgery at the bordism in order to get a connected and simply connected bordism *W* between $N \cup P$ and *M*. Decompose *W* into surgeries of dimensions $0, \ldots, n-2$.

Proof of the D-surgery theorem

Let *g* be a *D*-minimal metric on *M* and $f : S^k \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding.

We write close to $S := f(S^k \times \{0\}), r(x) := d(x, S)$

$$g \approx g|_{\mathcal{S}} + dr^2 + r^2 g_{round}^{n-k-1}$$

where g_{round}^{n-k-1} is the round metric on S^{n-k-1} . $t := -\log r$. $\frac{1}{r^2}g \approx e^{2t}g|_S + dt^2 + g_{round}^{n-k-1}$

We define a metric

$$g_{\rho}^{\#} = \begin{cases} g & \text{for } r > r_{1} \\ \frac{1}{r^{2}}g & \text{for } r \in (2\rho, r_{0}) \\ f^{2}(t)g|_{S} + dt^{2} + g_{round}^{n-k-1} & \text{for } r < 2\rho \end{cases}$$

that extends to a metric on $M^{\#}$.

Assume that ψ_{ρ} is a harmonic spinor on $(M^{\#}, g_{\rho}^{\#})$ with L^2 -norm 1.

The spinors ψ_{ρ} converge for $\rho \to 0$ in a certain weak sense to a harmonic spinor $\bar{\psi}$ on $M \setminus S$.

Show that each ψ_{ρ} falls off exponentially as $t \to \infty$.

The exponential fall off implies that $\bar{\psi}$ does not vanish.

It also implies regularity, harmonicity and L^2 -boundedness for $\bar{\psi}$.

A removal of singularity theorem says that $\bar\psi$ extends to a harmonic spinor on ${\it M}.$

The τ -invariant

We define

One shows that $\tau(M) > 0$ iff there is a metric with ker $D_g = \{0\}$. Hence:

- $\tau(M) = 0$ iff there is an index theoretical reason,
- *τ*(*M*) > 0 otherwise.

Monotonicity for τ

Theorem (AH2006)

Let M[#] be obtained from M by 0-dimensional surgery. Then

$$\tau(M^{\#}) \geq \tau(M).$$

Application (n = 2):

$$\begin{aligned} \tau(\boldsymbol{M}) &= \boldsymbol{0} & \text{if } \alpha(\boldsymbol{M}) = \boldsymbol{1} \\ \tau(\boldsymbol{M}) &= \lambda_{\min}(\boldsymbol{S}^2) = 4\pi & \text{if } \alpha(\boldsymbol{M}) = \boldsymbol{0} \end{aligned}$$

More details in my publications:

http://www.berndammann.de/publications
ammann@berndammann.de

