Surgery and harmonic spinors

B. Ammann ${ }^{1} \quad$ M. Dahl ${ }^{2} \quad$ E. Humbert ${ }^{1}$
${ }^{1}$ Institut Élie Cartan
Université Henri Poincaré, Nancy
France
${ }^{2}$ Institutionen för Matematik
Kungliga Tekniska Högskolan, Stockholm
Sweden

DMV-Tagung Bonn, 2006

Outline

Preliminaries

The Dirac operator
Atiyah-Singer index theorem
Generic metrics are D-minimal
D-minimal metrics
D-minimality theorem
History of partial solutions
Kähler manifolds and other generalized Dirac operators
The surgery method
Surgery
Scalar curvature and surgery
D-minimality and surgery
D-surgery thm implies D-minimality thm
Proof of D-surgery theorem
The tau-invariant
Definition
Monotonicity

The Dirac operator

Let M be a (fixed) compact manifold with spin structure, $n=\operatorname{dim} M$.
For any metric g on M one defines

- the spinor bundle $\Sigma_{g} M$: a vector bundle with a metric, a connection and Clifford multiplication $T M \otimes \Sigma_{g} M \rightarrow \Sigma_{g} M$.
- the Dirac operator $D_{g}: \Gamma\left(\Sigma_{g} M\right) \rightarrow \Gamma\left(\Sigma_{g} M\right)$: a self-adjoint elliptic differential operator of first order.
$\Longrightarrow \quad \operatorname{dim} \operatorname{ker} D_{g}$ is finite-dimensional.
The elements of ker D_{g} are called harmonic spinors.

Dirac operator and conformal change

Hitchin 1974:
If $\widetilde{g}=f^{2} g$, then one can identify $\Sigma_{g} M$ with $\Sigma_{\tilde{g}} M$ such that

$$
D_{\tilde{g}}=f^{-\frac{n+1}{2}} D_{g} f^{\frac{n-1}{2}}
$$

Hence

$$
\operatorname{dim} \operatorname{ker} D_{g}
$$

is conformally invariant.

Lichnerowicz formula

$$
\int_{M}|D \psi|^{2}=\int_{M}|\nabla \psi|^{2}+\frac{1}{4} \int_{M} \operatorname{scal}|\psi|^{2}
$$

Hence scal >0 implies $\operatorname{ker} D=\{0\}$.

Atiyah-Singer Index Theorem for $n=4 k$

Let $n=4 k . \Sigma_{g} M=\Sigma_{g}^{+} M \oplus \Sigma_{g}^{-} M . D_{g}=\left(\begin{array}{cc}0 & D_{g}^{-} \\ D_{g}^{+} & 0\end{array}\right)$
ind $D_{g}^{+}=\operatorname{dim} \operatorname{ker} D_{g}^{+}-\operatorname{codim} \operatorname{im} D_{g}^{+}=\operatorname{dim} \operatorname{ker} D_{g}^{+}-\operatorname{dim} \operatorname{ker} D_{g}^{-}$
Theorem (Atiyah-Singer 1968)

$$
\operatorname{ind} D_{g}^{+}=\int_{M} \widehat{A}(T M)
$$

Hence:

$$
\operatorname{dim} \operatorname{ker} D_{g} \geq\left|\int \widehat{A}(T M)\right|
$$

Index Theorem for $n=8 k+1$ and $8 k+2$

$$
n=8 k+1:
$$

$$
\alpha(M):=\operatorname{dim} \operatorname{ker} D_{g} \quad \bmod 2
$$

$n=8 k+2:$

$$
\alpha(M):=\frac{\operatorname{dim} \operatorname{ker} D_{g}}{2} \bmod 2
$$

$\alpha(M)$ is independent of g. However, $\alpha(M)$ depends on the choice of spin structure.

D-minimal metrics

We summarize:

$$
\operatorname{dim} \operatorname{ker} D^{g} \geq \begin{cases}\left|\int \widehat{A}(T M)\right|, & \text { if } n=4 k ; \\ 1, & \text { if } n \equiv 1 \quad \bmod 8 \text { and } \alpha(M) \neq 0 \\ 2, & \text { if } n \equiv 2 \quad \bmod 8 \text { and } \alpha(M) \neq 0 ; \\ 0, & \text { otherwise. }\end{cases}
$$

A metric is called D-minimal if we have equality.

D-minimality theorem

Theorem (D-minimality theorem, ADH 2006)
Generic metrics on connected compact spin manifolds are D-minimal.

Generic $=$ dense in C^{∞}-topology and open in C^{1}-topology.
The investigations for this result were initiated by Hitchin (1974). The theorem was explicitly conjectured by Bär-Dahl (2002).

History of partial solutions

In order to show that generic metrics are D-minimal, if suffices to show that one D-minimal metric exists.

- Hitchin (1974): dim ker D_{g} depends on g.
- Maier (1996) proved the theorem if

$$
n=\operatorname{dim} M \leq 4
$$

- Bär-Dahl (2002) proved the theorem when

$$
n \geq 5 \text { and } \pi_{1}(M)=\{e\} .
$$

They use the surgery method which has already turned out to be useful in the construction of manifolds with positive scalar curvature (Gromov-Lawson 1980, Stolz 1992).

- Our proof (ADH 2006) also uses the surgery method. It works under no restriction on n or π_{1}.

Large kernel conjecture

Conjecture
Let $\operatorname{dim} M \geq 3$. For any $k \in \mathbb{N}$ there is a metric g_{k} with dim ker $D \geq k$.
This conjecture has been proved by

- Hitchin 1974 on $M=S^{3}$ for any $k \in \mathbb{N}$,
- Hitchin 1974 in dimensions $n \equiv 0,1,7 \bmod 8$ for $k=1$,
- Bär 1996 in dimensions $n \equiv 3,7 \bmod 8$ for $k=1$,
- Seeger 2000 on $S^{2 m}, m \geq 2$, for $k=1$,
- Dahl 2006 on $S^{n}, n \geq 5$, for $k=1$.

Many open cases!

Comparison to Kähler manifolds

Let (M, g) be Kähler.
A spin structure corresponds to a square root L of the canonical bundle.
The Dirac operator on (M, g) coincides with the Dolbeault $\bar{\partial}+\bar{\partial}^{*}$ acting on $(0, *)$-forms twisted by L.

Kotschick (1996) constructs complex manifolds M, on which generic Kähler metrics are not D-minimal.

Comparison to other generalized Dirac operators: Gauss-Bonnet-Chern operator

n even

$$
\begin{gathered}
\Lambda^{*} T^{*} M=\Lambda^{\text {even }} T^{*} M \oplus \Lambda^{\text {odd }} T^{*} M \\
d+d_{g}^{*}=\left(\begin{array}{cc}
0 & \left(d+d_{g}^{*}\right)^{\text {odd }} \\
\left(d+d_{g}^{*}\right)^{\text {even }} & 0
\end{array}\right)
\end{gathered}
$$

$\operatorname{dim} \operatorname{ker}\left(d+d_{g}^{*}\right)^{\text {even }}=\sum_{i \text { even }} b_{i}, \quad \operatorname{dim} \operatorname{ker}\left(d+d_{g}^{*}\right)^{\text {odd }}=\sum_{i \text { odd }} b_{i}$,

$$
\begin{gathered}
\text { ind }\left(d+d_{g}^{*}\right)^{\text {even }}=\sum_{i=0}^{n}(-1)^{i} b_{i}=\chi(M) \\
\quad \operatorname{dim} \operatorname{ker}\left(d+d_{g}^{*}\right)=\sum_{i=0}^{n} b_{i}
\end{gathered}
$$

If $\sum_{i=0}^{n} b_{i}>\chi(M)$, then no metric is " $d+d^{*}$-minimal".

Signature Operator

$n=4 k$

$$
\Lambda^{*} T^{*} M=\Lambda^{+} T^{*} M \oplus \Lambda^{-} T^{*} M
$$

Splitting according to

$$
\begin{aligned}
\epsilon=i^{\frac{n}{2}+p(p-1)} *: \Gamma\left(\Lambda_{\mathbb{C}}^{p} T^{*} M\right) \rightarrow \Gamma\left(\Lambda_{\mathbb{C}}^{n-p} T^{*} M\right) \\
d+d_{g}^{*}=\left(\begin{array}{cc}
0 & \left(d+d_{g}^{*}\right)^{-} \\
\left(d+d_{g}^{*}\right)^{+} & 0
\end{array}\right)
\end{aligned}
$$

Let $b_{n / 2}^{+}$(resp. $b_{n / 2}^{-}$) be the number of positive (resp. negative) eigenvalues of the intersection form

$$
H^{n / 2}(M, \mathbb{R}) \times H^{n / 2}(M, \mathbb{R}) \rightarrow \mathbb{R}
$$

Then $b_{n / 2}^{+}+b_{n / 2}^{-}=b_{n / 2}$.

Signature Operator (cont.)

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ker}\left(d+d_{g}^{*}\right)^{+}=b_{n / 2}^{+}+\sum_{i=0}^{(n / 2)-1} b_{i} \\
& \operatorname{dim} \operatorname{ker}\left(d+d_{g}^{*}\right)^{-}=b_{n / 2}^{-}+\sum_{i=0}^{(n / 2)-1} b_{i} \\
& \text { ind }\left(d+d_{g}^{*}\right)^{+}=b_{n / 2}^{+}-b_{n / 2}^{-}=\operatorname{sign}(M) \\
& \quad \operatorname{dim} \operatorname{ker}\left(d+d_{g}^{*}\right)=\sum_{i=0}^{n} b_{i}
\end{aligned}
$$

Then no metric is "minimal", unless $b_{i}=0$ for all $i \neq n / 2$ and $b_{n / 2}^{ \pm}=0$.

Surgery

Let $f: S^{k} \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding.
We define

$$
M^{\#}:=M \backslash f\left(S^{k} \times B^{n-k}\right) \cup\left(B^{k+1} \times S^{n-k-1}\right) / \sim
$$

where / ~ means gluing the boundaries via

$$
M \ni f(x, y) \sim(x, y) \in S^{k} \times S^{n-k-1}
$$

We say that $M^{\#}$ is obtained from M by surgery of dimension k.

Example: 0-dimensional surgery on a surface.

Scalar curvature and surgery

Theorem (Gromov-Lawson 1980)
Let $k \leq n-3$.
If M carries a metric of positive scalar curvature, then $M^{\#}$ carries a metric of positive scalar curvature as well.
Strong consequences, in particular if $\pi_{1}=\{e\}$.
Gromov-Lawson fails for $k=n-2$ as $S^{1}=S^{n-k-1}$ has scalar curvature 0 .

D-minimality and surgery

Theorem (D-Surgery Theorem, ADH 2006)
Let $k \leq n-2$.
If M carries a D-minimal metric, then $M^{\#}$ carries a D-minimal metric as well.
Bär-Dahl (2002) proved the theorem with other methods for $k \leq n-3$.

Proof of " D-surgery Thm $\Longrightarrow D$-minimality Thm"

We use a theorem from Stolz 1992.
The given spin manifold M is bordant to $N \cup P$, where

- P carries a metric of positive scalar curvature,
- N is a disjoint union of products of S^{1}, a $K 3$-surface and a Bott manifold, and carries a D-minimal metric.
Perform surgery at the bordism in order to get a connected and simply connected bordism W between $N \cup P$ and M. Decompose W into surgeries of dimensions $0, \ldots, n-2$.

Proof of the D-surgery theorem

Let g be a D-minimal metric on M and $f: S^{k} \times \overline{B^{n-k}} \hookrightarrow M$ be an embedding.
We write close to $S:=f\left(S^{k} \times\{0\}\right), r(x):=d(x, S)$

$$
\left.g \approx g\right|_{s}+d r^{2}+r^{2} g_{\text {round }}^{n-k-1}
$$

where $g_{\text {round }}^{n-k-1}$ is the round metric on S^{n-k-1}. $t:=-\log r$.

$$
\left.\frac{1}{r^{2}} g \approx e^{2 t} g\right|_{s}+d t^{2}+g_{\text {round }}^{n-k-1}
$$

We define a metric

$$
g_{\rho}^{\#}= \begin{cases}g & \text { for } r>r_{1} \\ \frac{1}{r^{2}} g & \text { for } r \in\left(2 \rho, r_{0}\right) \\ \left.f^{2}(t) g\right|_{s}+d t^{2}+g_{\text {round }}^{n-k-1} & \text { for } r<2 \rho\end{cases}
$$

that extends to a metric on $M^{\#}$.

S^{n-k-1} has constant length

Assume that ψ_{ρ} is a harmonic spinor on $\left(M^{\#}, g_{\rho}^{\#}\right)$ with L^{2}-norm 1.
The spinors ψ_{ρ} converge for $\rho \rightarrow 0$ in a certain weak sense to a harmonic spinor $\bar{\psi}$ on $M \backslash S$.
Show that each ψ_{ρ} falls off exponentially as $t \rightarrow \infty$. The exponential fall off implies that $\bar{\psi}$ does not vanish. It also implies regularity, harmonicity and L^{2}-boundedness for $\bar{\psi}$.
A removal of singularity theorem says that $\bar{\psi}$ extends to a harmonic spinor on M.

The τ-invariant

We define

$$
\begin{gathered}
\lambda_{\min }\left(M,\left[g_{0}\right]\right):=\inf _{g \in\left[g_{0}\right]} \lambda_{1}\left(D_{g}^{2}\right) \operatorname{vol}(M, g)^{2 / n}, \\
\tau(M):=\sup _{\left[g_{0}\right]} \lambda_{\min }\left(M,\left[g_{0}\right]\right) .
\end{gathered}
$$

One shows that $\tau(M)>0$ iff there is a metric with $\operatorname{ker} D_{g}=\{0\}$. Hence:

- $\tau(M)=0$ iff there is an index theoretical reason,
- $\tau(M)>0$ otherwise.

Monotonicity for τ

Theorem (AH2006)
Let $M^{\#}$ be obtained from M by 0-dimensional surgery. Then

$$
\tau\left(M^{\#}\right) \geq \tau(M) .
$$

Application ($n=2$):

$$
\begin{array}{ll}
\tau(M)=0 & \text { if } \alpha(M)=1 \\
\tau(M)=\lambda_{\min }\left(S^{2}\right)=4 \pi & \text { if } \alpha(M)=0
\end{array}
$$

More details in my publications: http://www.berndammann.de/publications ammann@berndammann.de

