

Minisymposium 16 - Set Theory

Co-stationarity of the ground model

NATASHA DOBRINEN (KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC)

The bulk of this talk is based on joint work with Sy-David Friedman. Given $V \subseteq W$ models of ZFC with the same ordinals and $\kappa < \lambda$ cardinals in W with κ regular, let $\mathcal{P}_{\kappa}(\lambda)$ denote the collection of subsets of λ of size less than κ in W. We say that the ground model is *co-stationary* if $\mathcal{P}_{\kappa}(\lambda) \setminus V$ is stationary in $\mathcal{P}_{\kappa}(\lambda)$. Gitik showed the following: Suppose κ is a regular cardinal in W, and λ is greater than or equal to $(\kappa^+)^W$. If there is a real in $W \setminus V$, then the ground model is co-stationary in $\mathcal{P}_{\kappa}(\lambda)$.

We consider problems of generalizing Gitik's Theorem to forcing extensions in which no reals are added. In particular, we show that the analogue of Gitik's Theorem for \aleph_2 -c.c. forcings which add a new subset of \aleph_1 (but no new ω -sequences) is equiconsistent with a class of Erdös cardinals. The necessity of ω_1 -Erdös cardinals follows from a covering theorem of Magidor. For regular $\kappa \geq \aleph_2$ with $\aleph_{\kappa} > \kappa$, the co-stationarity of the ground model in the $\mathcal{P}_{\kappa^+}(\aleph_{\kappa})$ of a κ -Cohen forcing extension is equiconsistent with κ measureable cardinals.

For $\nu \geq \aleph_1$ we present some consistency results concerning partial orderings which add a new ν -sequence but no new subset of ν . We also include some more recent work with Justin Moore concerning partial orderings which add a new ω -sequence without adding a new real.