

Minisymposium 16 - Set Theory

Definable well–orders of $H(\omega_2)$ and forcing axioms

DAVID ASPERÓ (ICREA AND UNIVERSITAT DE BARCELONA)

This talk deals with the problem of building set-forcing extensions in which there is a simple definition, over the structure $\langle H(\omega_2), \in \rangle$ and without parameters, of a prescribed member of $H(\omega_2)$ or of a well–order of $H(\omega_2)$, possibly together with some strong forcing axiom.

I will present two theorems. The first one is an optimal result, with respect to the logical complexity of the definitions involved, at the level of the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$. This result is a particular case of a much more general theorem applying to $H(\kappa^+)$ for every uncountable regular cardinal κ .

The second theorem I will present says that, under the assumption that there is a supercompact cardinal, there is a partial order forcing both the existence of a well–order of $H(\omega_2)$ definable, over $\langle H(\omega_2), \in \rangle$, by a formula without parameters, and that the forcing axiom PFA^{++} holds.