Minisymposium 15-Operatortheorie

Estimates for the eigenvalues of the angular part of the Dirac equation in the Kerr-Newman metric
Monika Winklmeier (Universität Bremen)
The radial part of the Dirac equation describing a fermion in the Kerr-Newman background metric has an operator theoretical realisation as a block operator matrix $\mathcal{A}=\left(\begin{array}{cc}-D & B \\ B^{*} & D\end{array}\right)$ with domain $\mathcal{D}(\mathcal{A})=\mathcal{D}\left(B^{*}\right) \oplus \mathcal{D}(B)$ in the Hilbert space $\mathcal{H}=L_{2}(0, \pi)^{2}$. It can be shown that the spectrum of \mathcal{A} consists of eigenvalues only. We will show that the expression $\mathcal{A}-\lambda$ allows for a factorisation into three factors such that all the information about the spectrum of \mathcal{A} is contained in a scalar operator valued function. From this function we obtain a lower bound for the smallest eigenvalue in modulus of \mathcal{A}. Another method to obtain such a bound is to use techniques related to the quadratic nuermical range of block operator matrices.

