Title	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions	Numerical experiment
000					
Title					

Hurwitz continued fractions and Ruelle's transfer operator

Tobias Mühlenbruch Joint work with D. Mayer and F. Strömberg

Institute of Theoretical Physics TU Clausthal

tobias.muehlenbruch@tu-clausthal.de
http://home.tu-clausthal.de/~tmu/

Minisymposium on Automorphic forms and their applications Bonn, 18–20 September 2006

Title	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions		Numerical experiment	
000							
Outline of the presentation							

- PSL₂(Z) and geodesics
 PSL₂(Z) and geodesics
- 2 Continued fractions
 - Hurwitz continued fractions
 - Associated dynamical system

3 Transfer operator

- Explicit form of the transfer operator
- Transfer operator and the Selberg ζ -function

4 Relation to periodfunctions

• Eigenfunction of transfer operator and solutions of a functional equation

5 Summary

A simplified overview

6 Numerical experiment

- The Hecke triangle group G_5
- Spectrum of the transfer operator for the Hecke triangle group G_5

Title	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions	Numerical experiment
000					
A simpli	fied overview				

We denote geodesics γ on \mathfrak{H} (resp. $\mathrm{PSL}_2(\mathbb{Z})\backslash\mathfrak{H}$) by its base points:

$$\gamma = (\gamma_-, \gamma_+).$$

Example

In the example we see the geodesic $\gamma = ([0; \overline{-3, -2}], [0; \overline{-2, -3}]^{-1}) \approx (0.422 \dots, 1.57 \dots).$

	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions		Numerical experiment	
		0					
Hurwitz continued fractions							

Definition (Hurwitz continued fractions)

We identify a sequence of integers, $a_0 \in \mathbb{Z}$, and $a_1, a_2, \ldots \in \mathbb{Z}^{\star}$ with

$$x = T_0^a ST^{a_1} ST^{a_2} \cdots 0 = a_0 + \frac{-1}{a_1 + \frac{-1}{a_2 + \frac{-1}{a_1}}}$$

and say that it is a

- non-regular (formal) CF, [a0; a1, a2, ...] in general.
- regular CF, [a0; a1, a2, ...], if it does not contain "forbidden blocks": no ± 1 appear and if $a_i = \pm 2$ then $a_{i+1} \leq 0$.

 $\pi = [3; -7, 16, 294, 3, 4, 5, 15, \ldots]$ and $e = [3; 4, 2, -5, -2, 7, 2, -9, \ldots]$

Equivalent points

x and y are equivalet : \Leftrightarrow there exist a $g \in \mathrm{PSL}_2(\mathbb{Z})$ such that $gx = y \Leftrightarrow$

- the CF of x and y have the same tail or
- the CF of x and y have tail $[\overline{3}]$ and $[\overline{-3}]$.

	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions		Numerical experiment	
		00					
Associated dynamical system							

The generating map f

• Let $(x) = \lfloor x + \frac{1}{2} \rfloor$ be the nearest integer x and put $I = \begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix}$.

• The generating map for the CF of x is

$$f: I \to I; \quad x \mapsto \frac{-1}{x} - \left(\frac{-1}{x}\right) = \frac{-1}{x} - \left\lfloor\frac{-1}{x} + \frac{1}{2}\right\rfloor.$$

• If we set
$$y_1 = -\frac{1}{x}$$
 then the CF $x = [a_0; a_1, \ldots]$ are computed by $a_n = (y_n)$ and $y_{n+1} = f(y_n) = y_n - a_n$.

Natural extension of f

The natural extension of f is

$$\Omega \to \Omega; \quad (x,y) \mapsto \left(f(x), \frac{-1}{y+a_1}\right)$$

with
$$x = [0; a_1, ...]$$
.

	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions		Numerical experiment	
			•0				
Explicit form of the transfer operator							

(Ruelle's) Transfer operator

for the interval map $f: I \rightarrow I$ is defined as

$$\mathcal{L}_{\beta}h(x) = \sum_{y \in f^{-1}(x)} \left| \frac{df^{-1}(x)}{dx} \right|^{\beta} h(y)$$

on a suitable function space.

Theorem

Consider the Banachspace $V = C[-1,1] \cap C^{\omega}(-1,1)$ (with sup-norm). For $\operatorname{Re}(\beta) > 1$ the transfer operator $\mathcal{L}_{\beta} : V \times V \to V \times V$ is given by

$$\mathcal{L}_{\beta}\vec{h} = \left(\begin{array}{ccc} \sum_{n=3}^{\infty} h_{1}|_{2\beta}ST^{n} + \sum_{n=2}^{\infty} h_{2}|_{2\beta}ST^{-n} \\ \sum_{n=2}^{\infty} h_{1}|_{2\beta}ST^{n} + \sum_{n=3}^{\infty} h_{2}|_{2\beta}ST^{-n} \end{array}\right)$$

where $\vec{h} = {h_1 \choose h_2} \in V \times V$.

There exists a meromorphic continuation of \mathcal{L}_{β} into the complex β -plane.

	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions		Numerical experiment	
			00				
Transfer operator and the Selberg ζ -function							

Let Z(s) denote the Selberg ζ -function.

Main theorem

$$\det(1 - \mathcal{L}_{eta}) = Z(eta) \det(1 - \mathcal{K}_{eta})$$

where \mathcal{K}_{β} is a simple operator with $\beta \to \det(1 - \mathcal{K}_{\beta})$ has no poles and simple zeros in $\beta_{n,k} = n + \frac{2\pi i k}{\text{const}}$, $n \in \mathbb{Z}_{\leq 0}$, $k \in \mathbb{Z}$.

Corollary

- \mathcal{L}_{β} has eigenvalue 1 if and only if $Z(\beta) = 0$ or $\beta = \beta_{n,k}$.
- *L*_β has unbounded eigenvalues for β → β₀ if and only if Z(β) has a
 pole at β = β₀.
- At β = 0, −1, −2, ... L_β has eigenvalue 1 of the same order as the zero of Z(β) + 1.

Theorem (R.W. Bruggeman, M)

Eigenfunctions of \mathcal{L}_{β} , $2\beta \notin \mathbb{Z}_{\leq 2}$, with eigenvalue 1 give rise to Lewis-Zagier periodfunctions.

	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions	Summary	Numerical experiment
					•	
A simpl	fied overview					

	$PSL_2(\mathbb{Z})$ and geodesics	Continued fractions	Transfer operator	Relation to periodfunctions		Numerical experiment	
						0	
The Hecke triangle group G5							

Hecke triangle Group G_5

$$\mathcal{G}_q = \langle \mathcal{S}, \mathcal{T}
angle$$
 such that $(\mathcal{ST})^5 = 1$

- A realization is $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & \lambda_5 \\ 0 & 1 \end{pmatrix}$ with $\lambda_5 = 2\cos\left(\frac{\pi}{5}\right)$.
- G_5 is a non-arithmetic group.

Instead of the Hurwitz continued fractions we use the

Nakada continued fractions
$$x = a_0\lambda_5 + \frac{-1}{a_1\lambda_5 + \frac{-1}{a_2\lambda_5 + \frac{-1}{a_3\lambda_5 + \dots}}}$$
.

- \rightsquigarrow We have a return map.
- \rightsquigarrow We have an interval map.
- \rightsquigarrow We have a suitable reduction theory.

 \rightsquigarrow We can construct a Transfer operator \mathcal{L}_s for the geodesic flow $G_5 \setminus \mathfrak{H}$.

Spectrum of the transfer operator for $R \in [6, 14]$ and q = 5:

