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A simplified overview

Geodesic flow on PSL2(Z)\H
↓

Cross section & Return map Continued fraction
↓ ↓

Interval map (Hurwitz) ←− Reduction theory
↓

Transfer operator ←→ Periodfunctions
l ↑

Selberg ζ-function |
ց ւ

Maass wave forms
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PSL2(Z) and geodesics

Let PSL2(Z) = 〈S , T 〉

with S =
(

0
1

−1
0

)

and T =
(

1
0

1
1

)

,

with (ST )3 = 1.

We denote geodesics γ on H (resp. PSL2(Z)\H) by its base points:

γ = (γ−, γ+).

Example

In the example we see the geodesic
γ = ([0;−3,−2], [0;−2,−3]−1) ≈ (0.422 . . . , 1.57 . . .).
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Hurwitz continued fractions

Definition (Hurwitz continued fractions)

We identify a sequence of integers, a0 ∈ Z, and a1, a2, . . . ∈ Z
⋆ with

x = T a
0 ST a1 ST a2 · · · 0 = a0 +

−1

a1 + −1
a2+

−1
...

and say that it is a

non-regular (formal) CF, [a0; a1, a2, . . .] in general.

regular CF, [a0; a1, a2, . . .], if it does not contain “forbidden blocks”:
no ±1 appear and if ai = ±2 then ai+1 ≶ 0.

π = [3;−7, 16, 294, 3, 4, 5, 15, . . .] and e = [3; 4, 2,−5,−2, 7, 2,−9, . . .]

Equivalent points

x and y are equivalet :⇔ there exist a g ∈ PSL2(Z) such that gx = y ⇔

the CF of x and y have the same tail or

the CF of x and y have tail [ 3 ] and [−3 ].
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Associated dynamical system

The generating map f

Let (x) =
⌊

x + 1
2

⌋

be the nearest integer x and put I =
[

− 1
2 , 1

2

]

.

The generating map for the CF of x is

f : I → I ; x 7→
−1

x
−

(

−1

x

)

=
−1

x
−

⌊

−1

x
+

1

2

⌋

.

If we set y1 = − 1
x

then the CF x = [a0; a1, . . .] are computed by

an = (yn) and yn+1 = f (yn) = yn − an.

Natural extension of f

The natural extension of f is

Ω→ Ω; (x , y) 7→

(

f (x),
−1

y + a1

)

with x = [0; a1, . . .].
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Explicit form of the transfer operator

(Ruelle’s) Transfer operator

for the interval map f : I → I is defined as

Lβh(x) =
∑

y∈f −1(x)

∣

∣

∣

∣

df −1(x)

dx

∣

∣

∣

∣

β

h(y)

on a suitable function space.

Theorem

Consider the Banachspace V = C [−1, 1] ∩ Cω(−1, 1) (with sup-norm).
For Re(β) > 1 the transfer operator Lβ : V × V → V × V is given by

Lβ
~h =

(

∑∞
n=3 h1

∣

∣

2β
ST n +

∑∞
n=2 h2

∣

∣

2β
ST−n

∑∞
n=2 h1

∣

∣

2β
ST n +

∑∞
n=3 h2

∣

∣

2β
ST−n

)

where ~h =
(

h1

h2

)

∈ V × V .

There exists a meromorphic continuation of Lβ into the complex β-plane.
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Transfer operator and the Selberg ζ-function

Let Z (s) denote the Selberg ζ-function.

Main theorem

det(1− Lβ) = Z (β) det(1−Kβ)

where Kβ is a simple operator with β → det(1−Kβ) has no poles and
simple zeros in βn,k = n + 2πik

const
, n ∈ Z≤0, k ∈ Z.

Corollary

Lβ has eigenvalue 1 if and only if Z (β) = 0 or β = βn,k .

Lβ has unbounded eigenvalues for β → β0 if and only if Z (β) has a
pole at β = β0.

At β = 0,−1,−2, . . . Lβ has eigenvalue 1 of the same order as the
zero of Z (β) + 1.
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Eigenfunction of transfer operator and solutions of a functional equation

Lemma

Let ~h =
(

h1

h2

)

be an eigenfunction of Lβ with eigenvalue 1.

There exists a g ∈ Cω(−r − 1, r), r = 1+
√

5
2 , such that g restricted to

[−1, 1] is h1, g
∣

∣T−1 restricted to [−1, 1] is h2.
Moreover g satisfies the relation

g = g
∣

∣

2β

∞
∑

n=3

ST n + g
∣

∣

2β

∞
∑

n=2

T−1ST−n

and on (−r , r) the 4-term equation

g
∣

∣

2β

(

1 + ST 2
)

= g
∣

∣

2β

(

T−1 + T−1ST−2
)

.

If g satisfies the first relation then ~h(x) =
(

g(x)
g(x−1)

)

is again an

eigenfunction of Lβ with eigenvalue 1.

Theorem (R.W. Bruggeman, M)

Eigenfunctions of Lβ , 2β 6∈ Z≤2, with eigenvalue 1 give rise to
Lewis-Zagier periodfunctions.
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A simplified overview

Geodesic flow on PSL2(Z)\H
↓

Cross section & Return map Continued fraction
↓ ↓

Interval map (Hurwitz) ←− Reduction theory
↓

Transfer operator ←→ Periodfunctions
l ↑

Selberg ζ-function |
ց ւ

Maass wave forms
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The Hecke triangle group G5

Hecke triangle Group G5

Gq = 〈S , T 〉 such that (ST )5 = 1.

A realization is S =
(

0
1

−1
0

)

and T =
(

1
0

λ5

1

)

with λ5 = 2 cos
(

π
5

)

.

G5 is a non-arithmetic group.

Instead of the Hurwitz continued fractions we use the

Nakada continued fractions x = a0λ5 + −1
a1λ5+

−1

a2λ5+ −1
a3λ5+...

.

 We have a return map.

 We have an interval map.

 We have a suitable reduction theory.

 We can construct a Transfer operator Ls for the geodesic flow G5\H.
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Spectrum of the transfer operator

Spectrum of the transfer operator for R ∈ [6, 14] and q = 5:

Movie
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