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Quasicrystals?

What these creatures really are is not yet negotiated.
However there’s enough evidence to speculate about the
question ...
... as was done in the September issue of the Notices.
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Quasicrystals?

As a rule of thumb quasicrystals exhibit:

I Sharp diffraction peaks - usually coming with long
range order.

I Forbidden symmetries - excluding translation
invariance.
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Mathematical models for aperiodic order

Aperiodic order can mathematically be described by tilings:
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Delone (Delaunay) sets

A tiling with only finitely many tiles will lead to a model
with finite local complexity - there are only finitely many
different pattern of a fixed diameter. This can easily be
described by Delone sets. A set ω ⊂ Rd is called a Delone
set, if there exist r ,R ∈ R such that
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Delone sets

ω ⊂ Rd is called a Delone set, if there exist r ,R ∈ R such
that

I ∀x , y ∈ ω, x 6= y : Ur (x) ∩ Ur (y) = ∅,
I

⋃
x∈ω BR(x) = Rd .
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Delone sets

By Dr ,R(Rd) = Dr ,R we denote the set of all (r ,R)-sets; it
is a compact metric space in the natural topology.
D(Rd) =

⋃
0<r≤R Dr ,R(Rd) is the set of all Delone sets.
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Delone sets

Finite local complexity is phrase in terms of pattern. A
pattern is a pair (U, λ), consisting of an open bounded
subset of U ⊂ Rd and a finite subset λ ⊂ U. For a Delone
set ω and U as above, (U,U ∩ ω) is a pattern. We say that
ω has finite local complexity if for any L > 0 the number

nL := #{(ω − x) ∩ UL(0)|x ∈ ω} <∞.

An obvious extension is defined for subsets Ω ⊂ D. The
growth of nL in L is an important combinatorial
manifestation of (dis-)order. Periodic vs Bernoulli.
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Hamiltonians: continuum models

The basic idea is very simple: at each point of a Delone set
ω an ion is sitting, whose potential is given by v . This leads
to the Hamiltonian

H(ω) := −∆ +
∑
x∈ω

v(· − x)

The potential

Vω =
∑
x∈ω

v(· − x)

is depicted below
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Hamiltonians: continuum models

If the Delone set ω is periodic, then H(ω) describes a
crystal. If we choose the point set ω as the points of a
Poisson process (typically no Delone set) then H(ω)
describes a disordered solid. If ω is aperiodically ordered,
then H(ω) can be used to describe electronic properties of a
quasicrystal.
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Hamiltonians: discrete models

In the tight binding approximation which has proved to be
quite useful in solid state physics, the Hilbert space is
`2(ω). The operator is a difference operator, defined by its
matrix elements

(H(ω)δx |δy ).

We assume that (H(ω)δx |δy ) is 0 if the distance of x and y
is large enough; and that this matrix element only depends
on the pattern around x and y and call these operators of
finite range.
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Hamiltonians

Independent of the use of discrete or continuum models, we
are interested in the Schrödinger equation

ψ′(t) = −iH(ω)ψ(t) (SE )

it describes the time evolution of a wave function ψ(t).
Spectral properties of H(ω) can be translated into
qualitative properties of solutions of (SE).
The specific form of (dis-)order is encoded in H(ω).
It will be very useful to consider a whole collection
(H(ω), ω ∈ Ω) at the same time, for physical reasons and
for analytical reasons.
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(H(ω), ω ∈ Ω) at the same time, for physical reasons and
for analytical reasons.
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Delone dynamical systems

... simply consist of a translation invariant, compact set
Ω ⊂ D(Rd), on which the group Tt : Rd → Rd(t ∈ Rd) of
translations acts; we denote such a system by (Ω,T ).
We interpret such a DDS (Ω,T ) as a model for a certain
type of (dis-)order. Ergodic properties of (Ω,T ) reflect
combinatorial properties of the elements ω ∈ Ω and vice
versa. Moreover, spectral properties of the H(ω) are
sometimes related to ergodic properties of the DDS. E.g.

(Ω,T ) minimal
⇓

σ(H(ω)) = σ(H(ω′)) for all ω, ω′ ∈ Ω.

Minimality and unique ergodicity are equivalent to certain
combinatorial properties of the ω’s.
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Spectral properties

For a DDS (Ω,T ) that describes aperiodic order one is
tempted to expect purely singular continuous spectrum and
this has been verified in some classes of examples in one
dimension (quasiperiodic Hamiltonians, substitution
potentials). However in higher dimensions there are only
very few rigorous results :-( and even counterexamples.
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Spectral properties: continuum models

A very modest step has been taken in showing that
generically in the topological sense singular continuous
spectrum occurs.

Theorem
Let r ,R > 0 with 2r < R and v 6= 0. Then there exists an
open ∅ 6= U ⊂ R and a dense Gδ-set Ωsc ⊂ Dr ,R such that
for every ω ∈ Ωsc the spectrum of H(ω) contains U and is
purely singular continuous in U.

This follows from Barry Simon’s Wonderland Theorem and
uses heavily the spectral properties of periodic operators.
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Spectral properties: discrete models

Recall that here we are talking about operators on `2(ω)
whose matrix elements reflect the pattern of ω. E.g. nearest
neighbor Laplacians on certain graphs. This may lead to
compactly supported eigenfunctions sometimes called scars
and this of course contradicts purely singular continuous
spectrum. Scars can be excluded by a curvature condition.
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Discrete models: scars and curvature

κ(v , f ) =
1

# edges(v)
+

1

# edges(f )
− 1

2

Klassert, Lenz, Peyerimhoff, S.:
κ(v , f ) ≤ 0 for all (v , f ) =⇒ Exist no scars.
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Spectral properties: the integrated density of
states
Assume that (Ω,T ) is minimal and uniquely ergodic with
invariant measure µ. In this case

lim
|C |→∞

tr [χ(−∞,E ](Hω|C )]

|C |
=: N(E )

exists, is independent of ω and is the distribution function
of a measure on the real line. N(E ) is interpreted as the
number of enery levels below E per unit volume.
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Spectral properties: the integrated density of
states

Scars lead to jumps of the IDS and they are the only
possible reason for jumps of the IDS.
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Algebras of Hamiltonians

Assume that (Ω,T ) is minimal and uniquely ergodic with
invariant measure µ. Then we can define a type II1 factor
N (Ω,T ) with a trace τ such that

H = (H(ω), ω ∈ Ω) ∈ N (Ω,T )

and
N(E ) = τ(χ(−∞,E ](H))

For any f ∈ Cc(Rd) with
∫

f (x)dx = 1 we have

N(E ) =

∫
Ω

tr [Mf χ(−∞,E ](Hω)]dµ(ω)

This is intimately related to Connes noncommutative
integration theory.
(Precursors: Bellissard et. al., Hof, Kellendonk. More
general framework: Lenz, Peyerimhoff Veselic )
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Conclusion

The geometry of quasicrystals can be studied by
tilings or equivalently Delone sets. That leads
to the study of Hamiltonians H(ω) indexed by
the elements of a dynamical system (Ω,T ).
these operators are expected to exhibit exotic
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