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Motivation/Main result

• Consider singularly perturbed families of positive

definite forms hκ(ψ, φ) = hb(ψ, φ) + κ2he(ψ, φ)

with huge coupling constant κ.

• We have Hκ → H∞, where H∞ is defined by a

restriction of hκ in null(he) 6= {0}.

• We argue: For an analysis of λκ → λ∞ it is sufficient

to study (ψ,H−1
κ φ) for ψ, φ ∈ range(E∞{λ∞}).
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Multi-scale model problems

... in quantum as well as in classical mechanics

• −△ + V + κ2χO (Brasche, Demuth, Kirsch, ...)

• −△ + κ2div∗div (Beattie, Goerisch, Greenlee, ...)

• 1D-models
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But also in other settings e.g. semi classical analysis

for magnetic potentials (Dauge, Helffer, ...)
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Key technical result

Set η2
i (λ∞) = max

d(S)=i
S⊂E∞

min
ψ∈S\{0}

(ψ,H−1
κ
ψ)−(ψ,H−1

∞
ψ)

(ψ,H−1
κ ψ)

,

for E∞ := rangeE∞(λ∞), then

• for eigenvalues:

#λ∞
∑

i=1

|λ(i)
κ −λ∞|
λ∞

≃
#λ∞
∑

i=1

η2
i (λ)

• and for eigenvectors:

‖Eκ − E∞({λ∞})‖HS ≤ O(
√

∑#λ∞
i=1 η2

i (λ))

and in particular hκ[vκ − v∞] ≃ O(η2
#(λ∞))
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How to handle ηi(λ∞)

• variationally: (ψ,H−1
κ φ) − (ψ,H−1

∞ φ) = ‖HκH
−1
∞ ψ − ψ‖

H−1
κ

• geometrically: the quotient
(ψ,H−1

κ
ψ)−(ψ,H−1

∞
ψ)

(ψ,H−1
κ ψ)

is

sin2
∠(H−1

κ ψ,H−1
∞ ψ) in energy space (Q, hκ[·]).

• The theorem shows equivalence of error to the

a posteriori quantity sin2
∠hκ

(H−1
κ E∞, H−1

∞ E∞).
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Upper and lower estimates for ηi(λ)

• Adaptation of Brasche–Demuth ’05 yields
((I+He)

−1H−1
b
ψ,H−1

b
ψ)

κ2 ≤ (ψ,H−1
κ ψ) − (ψ,H−1

∞ ψ)

• Special case: we assume

‖H1/2
e H

−1/2
b f‖ ≥ 1

β
‖P

null(H
1/2

e H
−1/2

b
)
f‖

and obtain (ψ,H−1
κ ψ) − (ψ,H−1

∞ ψ) ≤ β

κ2Kψ

• Kψ is a behavior of the referent system.
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Regular perturbations

• β <∞ is a regularity assumption on perturbation he

... not satisfied by the deep-well model problem.

• For the χO potential use the laplace transform and

the Feynman–Kac formula, as in

Demuth–Brasche ’05, Demuth–Jeske–Kirsch ’93, ...

... or boundary layers as in Bruneau—Carbou ’02, ...
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Model problem for a non-regular perturbation

Consider Hκ = −∂xx + κ2χ[1,∞) in H1
0

[

0,∞
〉

• A direct expansion gives
λ∞1 −λκ

1

λ∞1
= 2

κ
+O

(

1
κ2

)

.

• For κ ≥ 5 our ηi(λ∞) approach gives

2

3 + κ
≤ eigenvalue error ≤ 10

3κ
+

1√
κ
O

“ 1

κ

”

2

1 + κ
≤ eigenvector error ≤ 10

κ
+

1√
κ
O

“ 1

κ

”
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Non-regular case



Asymptotic in the Large Coupling Limit 11

A regular test case:

• Consider the 1D model

Hκ =
`

u′

2 + u1

R

´

′
`

v′2 + v1

R

´

′

+ 1/ǫ2
`

u′

1 − u2

R

´ `

v′1 − v2

R

´

• One computes that β ≤
√

1+R2

R

• And one obtains

referent(λ∞)ε2 ≤ error ≤ ε2
√

1 +R2

R
Referent(λ∞)
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Conclusion and outlook

• Quantitative version od Weidmann’s convergence

results (’84)

• Problem is reduces to a study of an equivalent “local”

problem (study (ψ,H−1
κ φ) for ψ, φ ∈ E∞)

• Regular case, qualified by β <∞, covers a lot of

important examples

• Our approach can be seen as a form theoretic version

of the Temple–Kato inequality.


