Spectral Analysis of Non-Relativistic QED

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal

Institut für Analysis Dynamik und Modellierung, FB Mathematik, Universität Stuttgart

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED

3 × 4 3 ×

States of one Electron and Photons

The Hilbert Space \mathcal{H} is the space of sequences

$$\psi = (\psi^{(0)}, \psi^{(1)}, \ldots), \qquad \sum_{n=0}^{\infty} \|\psi^{(n)}\|^2 < \infty$$

~

 $\psi^{(0)} = \psi^{(0)}(x)$ one electron and **zero** photons $\psi^{(n)} = \psi^{(n)}(x, k_1, \lambda_1, \dots, k_n, \lambda_n)$ one electron and *n* photons

where $k_n \in \mathbb{R}^3$ is the wave-vector (momentum) of the *n*-th photons and $\lambda_n \in \{1, 2\}$ denotes its polarization.

$$(\psi^{(0)}, 0, 0, ...) =$$
 zero-photon state
 $(0, ..., \psi^{(n)}, 0, ...) = n$ – photon-state

- 同下 - ヨト - ヨト

Hamiltonian of the Hydrogen Atom

The Hamilton operator $H: D(H) \subset \mathcal{H} \to \mathcal{H}$ is given by

$$H = (-i\nabla_{\mathbf{x}} + \alpha^{3/2}\mathbf{A})^2 - \frac{Z}{|\mathbf{x}|} + H_f$$
$$= \left(\underbrace{-\Delta - \frac{Z}{|\mathbf{x}|}}_{H_{\text{el}}}\right) + H_f + \alpha^{3/2}W_\alpha,$$

where $D(H) = D(-\Delta + H_f)$, $x \in \mathbb{R}^3$ the position of the electron, $\alpha > 0$ fein-structure constant ($\alpha = e^2/\hbar c \simeq 1/137$),

$$H_f$$
 : field energy,
 $A = (A_1, A_2, A_3)$: quantized vector potential

Field Energy and Vector-Potential

Field energy. Identify $(0, \ldots, \psi^{(n)}, 0 \ldots)$ with $\psi^{(n)}$. Then $H_f \psi^{(0)} = 0$ $H_f \psi^{(n)}(x, k_1, \ldots, k_n) = \sum_{j=1}^n |k_j| \psi^{(n)}(x, k_1, \ldots, k_n).$

Quant. vector potential. $A_j = a_j + a_j^*$, j = 1, 2, 3, where a_j and a_i^* act like shift-operators:

 $\begin{aligned} a_{j}\psi &= (\tilde{\psi}^{(0)}, \tilde{\psi}^{(1)}, \tilde{\psi}^{(2)}, \ldots) & \text{annihilation operator} \\ \psi &= (\psi^{(0)}, \psi^{(1)}, \psi^{(2)}, \psi^{(3)}, \ldots) \\ &\searrow &\searrow \\ a_{i}^{*}\psi &= (0, \bar{\psi}^{(1)}, \bar{\psi}^{(2)}, \bar{\psi}^{(3)}, \ldots) & \text{creation operator} \end{aligned}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Field Energy and Vector-Potential

Field energy. Identify $(0, \ldots, \psi^{(n)}, 0 \ldots)$ with $\psi^{(n)}$. Then $H_f \psi^{(0)} = 0$ $H_f \psi^{(n)}(x, k_1, \ldots, k_n) = \sum_{j=1}^n |k_j| \psi^{(n)}(x, k_1, \ldots, k_n).$

Quant. vector potential. $A_j = a_j + a_j^*$, j = 1, 2, 3, where a_j and a_j^* act like shift-operators:

 $\begin{aligned} \mathbf{a}_{j}\psi &= (\tilde{\psi}^{(0)}, \tilde{\psi}^{(1)}, \tilde{\psi}^{(2)}, \ldots) & \text{annihilation operator} \\ \psi &= (\psi^{(0)}, \psi^{(1)}, \psi^{(2)}, \psi^{(3)}, \ldots) \\ \mathbf{a}_{j}^{*}\psi &= (\mathbf{0}, \bar{\psi}^{(1)}, \bar{\psi}^{(2)}, \bar{\psi}^{(3)}, \ldots) & \text{creation operator} \end{aligned}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Spectrum of *H*: $\alpha = 0$.

∃ 990

Spectrum of *H*: $\alpha = 0$.

Spectrum of *H*: $\alpha \neq 0$.

Self-adjointness. $H = H^*$ on $D(H) = D(-\Delta + H_f)$.

(α small : Kato-Rellich / α arbitrary : via construction von e^{-Ht} by stoch. methods)

< 同 > < 回 > < 回 > -

크

Spectrum of *H*: $\alpha \neq 0$.

Self-adjointness. $H = H^*$ on $D(H) = D(-\Delta + H_f)$.

(α small : Kato-Rellich / α arbitrary : via construction von e^{-Ht} by stoch. methods)

Spectrum. $\sigma(H) = [E, \infty)$, and if $\alpha \ll 1$,

Spectrum of *H*: $\alpha \neq 0$.

Self-adjointness. $H = H^*$ on $D(H) = D(-\Delta + H_f)$.

(α small : Kato-Rellich / α arbitrary : via construction von e^{-Ht} by stoch. methods)

Spectrum. $\sigma(H) = [E, \infty)$, and if $\alpha \ll 1$,

Huebner, Spohn / Bach, Fröhlich, Sigal / Skibsted / Dereziński, Jacksic / Lieb, Loss, Griesemer,...

Assumptions. Let *H* and *B* be self-adjoint operators in a Hilbert space \mathcal{H} , and let $U \subset \mathbb{R}$ be open.

$$\mathbf{s}\mapsto \mathbf{e}^{-i\mathbf{B}\mathbf{s}}f(\mathbf{H})\mathbf{e}^{i\mathbf{B}\mathbf{s}}\varphi$$

is twice continuously differentiable for all $\varphi \in \mathcal{H}$ and for all $f \in C_0^{\infty}(U)$.

Mourre estimate: For every λ ∈ U there exists a neighborhood Δ ∋ λ, (Δ̄ ⊂ U), and a number β > 0 such that

 $E_{\Delta}(H)[H, iB]E_{\Delta}(H) \geq \beta E_{\Delta}(H).$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Assumptions. Let *H* and *B* be self-adjoint operators in a Hilbert space \mathcal{H} , and let $U \subset \mathbb{R}$ be open.

• *H* is locally of class $C^2(B)$ in *U*: The map

$$\mathbf{s}\mapsto \mathbf{e}^{-i\mathbf{B}\mathbf{s}}\mathbf{f}(\mathbf{H})\mathbf{e}^{i\mathbf{B}\mathbf{s}}arphi$$

is twice continuously differentiable for all $\varphi \in \mathcal{H}$ and for all $f \in C_0^{\infty}(U)$.

Mourre estimate: For every λ ∈ U there exists a neighborhood Δ ∋ λ, (Δ̄ ⊂ U), and a number β > 0 such that

 $E_{\Delta}(H)[H, iB]E_{\Delta}(H) \geq \beta E_{\Delta}(H).$

크

Assumptions. Let *H* and *B* be self-adjoint operators in a Hilbert space \mathcal{H} , and let $U \subset \mathbb{R}$ be open.

• *H* is locally of class $C^2(B)$ in *U*: The map

$$\mathbf{s}\mapsto\mathbf{e}^{-i\mathbf{B}\mathbf{s}}\mathbf{f}(\mathbf{H})\mathbf{e}^{i\mathbf{B}\mathbf{s}}arphi$$

is twice continuously differentiable for all $\varphi \in \mathcal{H}$ and for all $f \in C_0^{\infty}(U)$.

Mourre estimate: For every λ ∈ U there exists a neighborhood Δ ∋ λ, (Δ̄ ⊂ U), and a number β > 0 such that

$$E_{\Delta}(H)[H, iB]E_{\Delta}(H) \geq \beta E_{\Delta}(H).$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem (Limiting absorption principle) For all s > 1/2 and all $\varphi, \psi \in \mathcal{H}$, the limit

$$\lim_{\varepsilon \downarrow 0} \langle \varphi, \langle \boldsymbol{B} \rangle^{-s} (\boldsymbol{H} - \lambda \pm i\varepsilon)^{-1} \langle \boldsymbol{B} \rangle^{-s} \psi \rangle$$

exists uniformly for λ in compact subsets of U ($\langle B \rangle = \sqrt{B^2 + 1}$). In particular, the spectrum of H is purely absolutely continuous in U.

A (1) < (1) < (2) < (2) </p>

The conjugate operator Bach, Fröhlich, Sigal

B = second quantized dilation generator, that is,

$$B = \mathrm{d}\Gamma(b), \qquad b = \frac{1}{2}(k \cdot y + y \cdot k)$$

where $y := i \nabla_k$. Then

$$[H_f, iB] = H_f > 0$$
 on $[vacuum]^{\perp}$.

With interaction: $H = H_0 + \alpha^{3/2} W_{\alpha}$

$$[H, iB] = H_f + \alpha^{3/2} [W_\alpha, iB]$$

$$\geq \frac{1}{2} H_f + O(\alpha^3)$$

No positive commutator below $E + O(\alpha^3)$!

B = second quantized dilation generator, that is,

$$B = \mathrm{d}\Gamma(b), \qquad b = \frac{1}{2}(k \cdot y + y \cdot k)$$

where $y := i \nabla_k$. Then

$$[H_f, iB] = H_f > 0$$
 on $[vacuum]^{\perp}$.

With interaction: $H = H_0 + \alpha^{3/2} W_{\alpha}$

$$\begin{array}{ll} [H, iB] &=& H_f + \alpha^{3/2} [W_\alpha, iB] \\ &\geq& \frac{1}{2} H_f + O(\alpha^3) \end{array}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

No positive commutator below $E + O(\alpha^3)$

B = second quantized dilation generator, that is,

$$B = \mathrm{d}\Gamma(b), \qquad b = \frac{1}{2}(k \cdot y + y \cdot k)$$

where $y := i \nabla_k$. Then

$$[H_f, iB] = H_f > 0$$
 on $[vacuum]^{\perp}$.

With interaction: $H = H_0 + \alpha^{3/2} W_{\alpha}$

$$\begin{array}{ll} [H, iB] &=& H_f + \alpha^{3/2} [W_\alpha, iB] \\ &\geq& \frac{1}{2} H_f + O(\alpha^3) \end{array}$$

No positive commutator below $E + O(\alpha^3)$!

The conjugate operator

Hübner, Spohn / Skibsted / Georgescu, Gérard, Møller

 \hat{B} = second quantized radial derivative, that is,

$$\hat{B} = \mathrm{d}\Gamma(\hat{b}), \qquad \hat{b} = \frac{1}{2}(\hat{k}\cdot y + y\cdot \hat{k})$$

where $\hat{k} = k/|k|$, $y = i\nabla_k$. Then

 $[H_f, i\hat{B}] = N \ge 1$ on $[vacuum]^{\perp}$.

With interaction: $H = H_0 + \alpha^{3/2} W_{\alpha}$

$$[H, i\hat{B}] = N + \alpha^{3/2} [W_{\alpha}, i\hat{B}]$$

$$\geq \frac{1}{2} N + O(\alpha^3)$$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

 \hat{B} is symmetric but not self-adjoint!

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED

The conjugate operator

Hübner, Spohn / Skibsted / Georgescu, Gérard, Møller

 \hat{B} = second quantized radial derivative, that is,

$$\hat{B} = \mathrm{d}\Gamma(\hat{b}), \qquad \hat{b} = \frac{1}{2}(\hat{k}\cdot y + y\cdot \hat{k})$$

where $\hat{k} = k/|k|$, $y = i\nabla_k$. Then

$$[H_f, \hat{B}] = N \ge 1$$
 on $[vacuum]^{\perp}$.

With interaction: $H = H_0 + \alpha^{3/2} W_{\alpha}$

$$\begin{array}{ll} [H,i\hat{B}] &=& N+\alpha^{3/2}[W_{\alpha},i\hat{B}]\\ &\geq& \frac{1}{2}N+O(\alpha^3) \end{array}$$

・ ロ と ・ 四 と ・ 日 と ・ 日 と

 \hat{B} is symmetric but not self-adjoint!

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED

The conjugate operator

Hübner, Spohn / Skibsted / Georgescu, Gérard, Møller

 \hat{B} = second quantized radial derivative, that is,

$$\hat{B} = \mathrm{d}\Gamma(\hat{b}), \qquad \hat{b} = \frac{1}{2}(\hat{k}\cdot y + y\cdot \hat{k})$$

where $\hat{k} = k/|k|$, $y = i\nabla_k$. Then

$$[H_f, i\hat{B}] = N \ge 1$$
 on $[vacuum]^{\perp}$.

With interaction: $H = H_0 + \alpha^{3/2} W_{\alpha}$

$$\begin{array}{ll} [H,i\hat{B}] &=& \mathsf{N}+\alpha^{3/2}[W_{\alpha},i\hat{B}]\\ &\geq& \frac{1}{2}\mathsf{N}+\mathsf{O}(\alpha^3) \end{array} \end{array}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 \hat{B} is symmetric but not self-adjoint!

Assumptions.

• $e_1 = \inf \sigma(H_{el})$ is simple and isolated.

Let $e_2 = \inf \sigma(H_{el}) \setminus \{e_1\}$ and $e_{gap} = e_2 - e_1$.

THEOREM

► The Hamiltonian H is locally of class C²(B) on the interval (-∞, e_{gap}/3).

• If $\sigma \leq e_{gap}/2$ and $\Delta = [\sigma/3, 2\sigma/3]$, then

$$E_{\Delta}(H-E)[H,iB]E_{\Delta}(H-E) \geq \frac{\sigma}{10}E_{\Delta}(H-E).$$

Assumptions.

• $e_1 = \inf \sigma(H_{el})$ is simple and isolated.

Let $\mathbf{e}_2 = \inf \sigma(\mathbf{H}_{el}) \setminus \{\mathbf{e}_1\}$ and $\mathbf{e}_{gap} = \mathbf{e}_2 - \mathbf{e}_1$.

THEOREM

► The Hamiltonian H is locally of class C²(B) on the interval (-∞, e_{gap}/3).

• If $\sigma \leq e_{gap}/2$ and $\Delta = [\sigma/3, 2\sigma/3]$, then

$$E_{\Delta}(H-E)[H,iB]E_{\Delta}(H-E) \geq \frac{\sigma}{10}E_{\Delta}(H-E).$$

Assumptions.

• $e_1 = \inf \sigma(H_{el})$ is simple and isolated.

Let $\mathbf{e}_2 = \inf \sigma(\mathbf{H}_{el}) \setminus \{\mathbf{e}_1\}$ and $\mathbf{e}_{gap} = \mathbf{e}_2 - \mathbf{e}_1$.

THEOREM

► The Hamiltonian H is locally of class C²(B) on the interval (-∞, e_{gap}/3).

• If
$$\sigma \leq e_{gap}/2$$
 and $\Delta = [\sigma/3, 2\sigma/3]$, then

$$E_{\Delta}(H-E)[H,iB]E_{\Delta}(H-E) \geq rac{\sigma}{10}E_{\Delta}(H-E).$$

Assumptions.

• $e_1 = \inf \sigma(H_{el})$ is simple and isolated.

Let $e_2 = \inf \sigma(H_{el}) \setminus \{e_1\}$ and $e_{gap} = e_2 - e_1$.

THEOREM

► The Hamiltonian H is locally of class C²(B) on the interval (-∞, e_{gap}/3).

• If
$$\sigma \leq \mathbf{e}_{gap}/2$$
 and $\Delta = [\sigma/3, 2\sigma/3]$, then

$$E_{\Delta}(H-E)[H, iB]E_{\Delta}(H-E) \geq \frac{\sigma}{10}E_{\Delta}(H-E).$$

Ingredients for proving the Mourre estimate

The IR-cutoff Hamiltonian. Let H_{σ} be the Hamiltonian *H* with an infrared cutoff at $|k| = \sigma$. Then

$$H_{\sigma} = H^{\sigma} \otimes 1 + 1 \otimes H_{f,\sigma}$$

w.r.to $\mathcal{H} = \mathcal{H}^{\sigma} \otimes \mathcal{F}_{\sigma}$, where \mathcal{F}_{σ} is the bosonic Fock space over $L^{2}(|\mathbf{k}| \leq \sigma, \mathbb{C}^{2})$.

Key ingredient. H^{σ} has the gap $(E_{\sigma}, E_{\sigma} + \sigma)$ in its spectrum above $E_{\sigma} = \inf \sigma(H_{\sigma}) = \inf \sigma(H^{\sigma})$. It follows that

$$f_{\Delta}(H_{\sigma}-E_{\sigma})=P^{\sigma}\otimes f_{\Delta}(H_{f,\sigma})$$

for every function f_{Δ} with support in (0, σ). P^{σ} = ground state projection of H^{σ} .

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Ingredients for proving the Mourre estimate

The IR-cutoff Hamiltonian. Let H_{σ} be the Hamiltonian *H* with an infrared cutoff at $|k| = \sigma$. Then

$$H_{\sigma} = H^{\sigma} \otimes 1 + 1 \otimes H_{f,\sigma}$$

w.r.to $\mathcal{H} = \mathcal{H}^{\sigma} \otimes \mathcal{F}_{\sigma}$, where \mathcal{F}_{σ} is the bosonic Fock space over $L^{2}(|\mathbf{k}| \leq \sigma, \mathbb{C}^{2})$.

Key ingredient. H^{σ} has the gap $(E_{\sigma}, E_{\sigma} + \sigma)$ in its spectrum above $E_{\sigma} = \inf \sigma(H_{\sigma}) = \inf \sigma(H^{\sigma})$. It follows that

$$f_{\Delta}(H_{\sigma}-E_{\sigma})=P^{\sigma}\otimes f_{\Delta}(H_{f,\sigma})$$

for every function f_{Δ} with support in $(0, \sigma)$. P^{σ} = ground state projection of H^{σ} .

• Image: A image:

Strategy for proving the Mourre estimate

Let f_{Δ} be a smoothed characteristic function of the interval $[\sigma/3, 2\sigma/3]$.

Step 1.

$$f_{\Delta}(H_{\sigma}-E_{\sigma})[H,iB]f_{\Delta}(H_{\sigma}-E_{\sigma})\geq rac{\sigma}{8}f_{\Delta}(H_{\sigma}-E_{\sigma})^{2}.$$

Step 2.

$$\|f_{\Delta}(H-E)-f_{\Delta}(H_{\sigma}-E_{\sigma})\|=O(\alpha^{3/2}\sigma).$$

・ロット (母) ・ ヨ) ・ ・ ヨ)

크

Steps 1 and 2 prove the Theorem for $\alpha \ll 1$.

Strategy for proving the Mourre estimate

Let f_{Δ} be a smoothed characteristic function of the interval $[\sigma/3, 2\sigma/3]$.

Step 1.

$$f_{\Delta}(H_{\sigma}-E_{\sigma})[H,iB]f_{\Delta}(H_{\sigma}-E_{\sigma})\geq rac{\sigma}{8}f_{\Delta}(H_{\sigma}-E_{\sigma})^{2}.$$

Step 2.

$$\|f_{\Delta}(H-E)-f_{\Delta}(H_{\sigma}-E_{\sigma})\|=\mathsf{O}(\alpha^{3/2}\sigma).$$

< 同 > < 回 > < 回 > <

크

Steps 1 and 2 prove the Theorem for $\alpha \ll 1$.

We split $B = B_{\sigma} + B^{\sigma}$, according to $1 = \chi(|k| \le \sigma) + \chi(|k| \ge \sigma)$. Then

$$f_{\Delta}(H_{\sigma}-E_{\sigma})[H,iB^{\sigma}]f_{\Delta}(H_{\sigma}-E_{\sigma})=0.$$

as a consequence of a Virial Theorem, while

$$f_{\Delta}(H_{\sigma}-E_{\sigma})[H,iB_{\sigma}]f_{\Delta}(H_{\sigma}-E_{\sigma})\geq \frac{\sigma}{8}f_{\Delta}(H_{\sigma}-E_{\sigma})^{2}.$$

by straightforward estimates using $f_{\Delta}(H_{\sigma} - E_{\sigma}) = P^{\sigma} \otimes f_{\Delta}(H_{f,\sigma})$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Second Approach using Renormalization

(so far only for QED in dipole approximation)

M. Griesemer, joint work with J. Fröhlich, I.M. Sigal Spectral Analysis of Non-Relativistic QED

Feshbach-Schur Transform

Let
$$P^2 = P = P^*$$
, $\overline{P} = 1 - P$, and $H_{\overline{P}} = \overline{P}H\overline{P}$. If
 $H_{\overline{P}}^{-1} \upharpoonright \overline{P}\mathcal{H}$, exists,

then, with respect to $\mathcal{H} = \mathcal{PH} \oplus \overline{\mathcal{PH}}$,

$$H = \begin{pmatrix} 1 & PH\bar{P}H_{\bar{P}}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathcal{F}_{P}(H) & 0 \\ 0 & H_{\bar{P}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ H_{\bar{P}}^{-1}\bar{P}HP & 1 \end{pmatrix},$$

where

$$\mathcal{F}_{P}(H) = PHP - PH\bar{P}H_{\bar{P}}^{-1}\bar{P}HP.$$

Hence, if $(H_{\bar{P}} - z)^{-1} \upharpoonright \bar{P}\mathcal{H}$ exists, then

LAP for $\mathcal{F}_P(H-z) \Rightarrow \text{LAP for } (H-z).$

・ロット (母) ・ ヨ) ・ ・ ヨ)

크

Feshbach-Schur Transform

Let
$$P^2 = P = P^*$$
, $\overline{P} = 1 - P$, and $H_{\overline{P}} = \overline{P}H\overline{P}$. If
 $H_{\overline{P}}^{-1} \upharpoonright \overline{P}\mathcal{H}$, exists,

then, with respect to $\mathcal{H} = \mathcal{PH} \oplus \overline{\mathcal{PH}}$,

$$H = \begin{pmatrix} 1 & PH\bar{P}H_{\bar{P}}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathcal{F}_{P}(H) & 0 \\ 0 & H_{\bar{P}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ H_{\bar{P}}^{-1}\bar{P}HP & 1 \end{pmatrix},$$

where

$$\mathcal{F}_{P}(H) = PHP - PH\bar{P}H_{\bar{P}}^{-1}\bar{P}HP.$$

Hence, if $(H_{\bar{P}} - z)^{-1} \upharpoonright \bar{P}\mathcal{H}$ exists, then

LAP for
$$\mathcal{F}_P(H-z) \Rightarrow \text{LAP for } (H-z).$$

▲□ → ▲ □ → ▲ □ → □

크

Step 1. Choose

$$P = P_{\mathsf{el}} \otimes \chi(H_{\mathsf{f}} \leq 1),$$

 P_{el} = ground state projection of H_{el} . Since rank (P_{el})) = 1,

$$H^{(0)}(z) := \mathcal{F}_{\mathcal{P}}(H-z) \quad \text{on } \mathcal{H}_{\mathrm{red}} = \chi(H_{\mathrm{f}} \leq 1)\mathcal{F}.$$

Step 2. Let $P = \chi(H_f \le \rho)$ where $\rho < 1$, and set

$$H^{(1)}(z) := \underbrace{\frac{1}{\rho} \Gamma_{\rho} \mathcal{F}_{P}(H^{(0)}(z)) \Gamma_{\rho}^{*}}_{\mathcal{R}_{\rho}(H^{(0)}(z))}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

on $\mathcal{H}_{\mathrm{red}}$. Here $\Gamma_{
ho}: \chi(H_{\mathrm{f}} \leq
ho)\mathcal{F} \rightarrow \chi(H_{\mathrm{f}} \leq 1)\mathcal{F}$.

Step 1. Choose

$$P = P_{el} \otimes \chi(H_f \leq 1),$$

 P_{el} = ground state projection of H_{el} . Since rank (P_{el})) = 1,

$$\mathcal{H}^{(0)}(z) := \mathcal{F}_{\mathcal{P}}(\mathcal{H}-z) \qquad ext{on } \mathcal{H}_{ ext{red}} = \chi(\mathcal{H}_{ ext{f}} \leq 1)\mathcal{F}.$$

Step 2. Let $P = \chi(H_f \le \rho)$ where $\rho < 1$, and set

$$H^{(1)}(z) := \underbrace{\frac{1}{\rho} \Gamma_{\rho} \mathcal{F}_{\mathcal{P}}(H^{(0)}(z)) \Gamma_{\rho}^{*}}_{\mathcal{R}_{\rho}(H^{(0)}(z))}$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

on \mathcal{H}_{red} . Here $\Gamma_{\rho}: \chi(H_f \leq \rho)\mathcal{F} \rightarrow \chi(H_f \leq 1)\mathcal{F}$.

Iterating the RG-Transform

Let $H^{(n)}(z) = \mathcal{R}^n_{\rho}(H^{(0)}(z))$. Then $H^{(n)}(z) = \underbrace{T^{(n)}(H_f, z)}_{\text{function of } H_f} + \underbrace{E^{(n)}(z)}_{\langle H^{(n)}(z) \rangle_{\Omega}} + \underbrace{W^{(n)}(z)}_{\to 0, (n \to \infty)}.$

Mourre est. and LAP for $H^{(n)}(z)$ and $\text{Re}(z) \in \Delta_n \subset (E, \infty)$. Δ_n is determined by

- existence of $H^{(n)}(z)$ (bound on Δ_n from above)
- positivity of the Mourre constant (bound on Δ_n from below)

For $g \ll 1$ one can achieve that

$$\bigcup_{n=0}^{\infty} \Delta_n = (E, E + e_{\rm gap}/18).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Iterating the RG-Transform

Let
$$H^{(n)}(z) = \mathcal{R}^{n}_{\rho}(H^{(0)}(z))$$
. Then

$$H^{(n)}(z) = \underbrace{\mathcal{T}^{(n)}(\mathcal{H}_{f}, z)}_{\text{function of }\mathcal{H}_{f}} + \underbrace{\mathcal{E}^{(n)}(z)}_{\langle \mathcal{H}^{(n)}(z) \rangle_{\Omega}} + \underbrace{\mathcal{W}^{(n)}(z)}_{\to 0, (n \to \infty)}.$$

Mourre est. and LAP for $H^{(n)}(z)$ and $\text{Re}(z) \in \Delta_n \subset (E, \infty)$. Δ_n is determined by

- existence of $H^{(n)}(z)$ (bound on Δ_n from above)
- positivity of the Mourre constant (bound on Δ_n from below)

For $g \ll 1$ one can achieve that

$$\bigcup_{n=0}^{\infty} \Delta_n = (E, E + e_{\text{gap}}/18).$$

< 同 > < 回 > < 回 > <

Hydrogen Atom and Scalar Bosons

Model.

$$\begin{aligned} H &:= H_{\mathsf{el}} \otimes 1 + 1 \otimes H_{\mathsf{f}} + g\phi(G_{\mathsf{x}}), \\ \phi(G_{\mathsf{x}}) &:= \int \frac{d^3k}{|k|^{1/2}} \left(\overline{\kappa(k)} e^{ik \cdot \mathsf{x}} a(k) + \kappa(k) e^{-ik \cdot \mathsf{x}} a(k)^* \right). \end{aligned}$$

Assumptions.

- $e_1 = \inf \sigma(H_{el})$ is simple and isolated.
- There exists $\mu > 0$ such that

$$|\kappa(k)| = O(|k|^{\mu}), \qquad (k \rightarrow 0).$$

THEOREM

If $g \ll$ 1, then for $\lambda \in (\textit{E},\textit{E}+\textit{e}_{gap}/18)$ and $s \in (1/2,1)$

$$\langle B \rangle^{-s} (H - \lambda \pm i0)^{-1} \langle B \rangle^{-s}$$

exists and is Hölder-continuous of degree (s - 1/2).