Arctic phenomena in random tilings with fixed boundaries

NICOLAS DESTAINVILLE

Laboratoire de Physique Théorique Université Paul Sabatier – CNRS

September 18, 2006

Nicolas Destainville, DMV, 09/18/06 Arctic phenomena in random tilings with fixed boundaries

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

- Random tilings and the Arctic phenomenon
- Variational principle
- Oimension 2: rhombus and domino tilings
- Dimension 3: rhombohedra tilings

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- Mike Widom (Pittsburgh, USA)
- Rémy Mosseri (Paris, France)
- Francis Bailly (Paris, France)

イロト 不得 とくほ とくほとう

DQC

1 – Random tilings by rhombi, dominoes and rhombohedra

- finite set of prototiles (or tiles)
- covering of a compact region (e.g. of Euclidean space)
- no gaps or overlaps

Examples:

DQC

Tilings by rhombic tiles – Entropy and shape

- $D \rightarrow d$ tilings:
 - d-dimensional euclidean space
 - D edge orientations
 - $\binom{D}{d}$ rhombic prototiles

Physical symmetries: octagonal (4 \rightarrow 2), decagonal (5 \rightarrow 2), icosahedral (6 \rightarrow 3)

Questions:

- How many tilings of a given region? Large size limit: $S = \lim_{N \to \infty} \frac{\log (\# \text{ tilings})}{N}$
- What is the typical "shape" of a tiling?

The entropy per tile S depends on tile fractions and boundary conditions

Example: hexagonal $(3 \rightarrow 2)$ tilings

Equal tile fractions ("diagonal" case): $n_1 = n_2 = n_3 = \frac{1}{3}$

• Periodic (or free) boundary conditions (torus): $S = \frac{2}{\pi} \int_0^{\pi/3} \log(2 \cos x) \, dx = 0.323...$ (Wiannier 1950)

• Polygonal boundary conditions:

 $S = \frac{3}{2} \log 3 - 2 \log 2 = 0.261 \dots$ (Elser 1985)

Analytically solved models (periodic boundaries; entropy maxima)

- squares-triangles (12-fold symmetry):
 S = 0.120... (per vertex; Widom; Kalugin, '93,'94)
- rectangles-triangles (8-fold symmetry):
 S = 0.119... (per area; de Gier, Nienhuis, '96)
- rectangles-triangles (10-fold symmetry):
 S = 0.175... (per vertex; de Gier, Nienhuis, '98)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- frozen regions near the boundary
- gradient of entropy
- macroscopic effect on typical tilings (typical "shape")
- macroscopic heterogeneity

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sar

- What is the shape of the "arctic curve"?
- What are the tile statistics inside the arctic curve?

2 – Variational principle

N. Destainville, R. Mosseri, F. Bailly, J. Stat. Phys. (1997)

N. Destainville, J. Phys. A. (1998)

H. Cohn, R. Kenyon, J. Propp, J. Amer. Math. Soc. (2001)

By contrast:

- Local patch of tiling $1 \ll \delta R \ll L \to \infty$
- locally homogeneous
- local tile fractions n_1, n_2, n_3
- local entropy per tile $\sigma(n_1, n_2, n_3)$: free-boundary entropy per area

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Coarse-graining (or continuous limit): 3 regular functions

 $n = (n_1(x, y), n_2(x, y), n_3(x, y))$ (such that $n_1 + n_2 + n_3 = 1$)

Height-function or directed-membrane representation

Boundary conditions

Height function: $\hat{\phi} : \Delta \subset \mathbb{R}^2 \to \mathbb{R}$

$\hat{\phi}$ facetted

Coarse-graining when $L \to \infty$ ϕ smooth

イロト イポト イヨト イヨト

Sac

Nicolas Destainville, DMV, 09/18/06 Arctic phenomena in random tilings with fixed boundaries

- Coarse-graining \equiv rescaling of factor 1/L
- Tile side $= 1/L \rightarrow 0$ when $L \rightarrow \infty$
- Only large scale (macroscopic) fluctuations remain
- One-to-one correspondance $\nabla \phi \leftrightarrow$ tile fractions n_1, n_2, n_3 $\sigma(n_1, n_2, n_3) = \sigma(\nabla \phi)$: free-boundary entropy per area
- Entropy functional: N_{ϕ} = Number of *N*-tile facetted membranes $\hat{\phi}$ "close" to ϕ after rescaling

$$s[\phi] = \lim_{N \to \infty} \frac{\log(\mathcal{N}_{\phi})}{N}$$

 $\boldsymbol{s}[\boldsymbol{\phi}]$ accounts for the microscopic degrees of freedom

$$s[\phi] = rac{1}{V(\Delta)} \int_{\Delta} \sigma(
abla \phi) \, dxdy$$

• Functional integral: $\mathcal{N}_{fixed}(N) \approx \sum_{\phi \in \Phi} \mathcal{N}_{\phi} = \int_{\Phi} \mathcal{D}\phi \ exp(Ns[\phi])$ $S(N) = \log(\mathcal{N}_{fixed}(N))/N$ Assume that:

- $s[\phi]$ has a unique maximum $\phi_{max} \in \Phi$
- $s[\phi]$ is regular (quadratic) near ϕ_{max}

 \Rightarrow Saddle-point argument: $\lim_{N\to\infty} S(N) = s[\phi_{max}]$

The statistical ensemble is dominated by states "close" to $\phi_{\textit{max}}$ at the large size limit

- relates (formally) the fixed-boundary entropy S to the free-boundary one σ
- the knowledge of φ_{max} provides the tile statistics at each point (x, y)
- BUT: REQUIRES THE KNOWLEDGE OF $\sigma(\nabla \phi)$...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

3 – Dimension 2: hexagonal $(3 \rightarrow 2)$ tilings

- $\sigma(\nabla \phi = (E_1, E_2))$ is known (Wannier, 1950)
- outside the arctic circle: ϕ_{max} affine: periodic tiling
- inside the circle:

f

$$E_{1} = \frac{3}{\pi\sqrt{2}} [\cot an^{-1}f(x,y) + \cot an^{-1}f(-x,y)] - \sqrt{2}$$

$$E_{2} = \frac{\sqrt{3}}{\pi\sqrt{2}} [\cot an^{-1}f(x,y) - \cot an^{-1}f(-x,y)]$$

$$(x,y) = \frac{1}{2\sqrt{3}} \frac{8/\sqrt{3}xy - 8/3y^{2} + 2}{\sqrt{1 - 4/3(x^{2} + y^{2})}}$$

• Non-diagonal tilings $L_1 \neq L_2 \neq L_3$: circle \rightarrow ellipse.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Strain-free fixed boundaries: corrugated hexagon

 $S[\phi]$ is maximized by the constant function $\phi_{max} = 0$. Homogeneous tiling, no frozen corners: $S = \sigma(\nabla \phi = 0) = S_{free}$

Check: exact enumeration at finite $L \le 150$ by a determinental method (Gessel, Viennot, '85)

$$S_{\it fit} = 0.32309$$
 and $S_{\it free} = 0.32307$

0.325

0.32 0.316 0.31

Other examples

Dominoes in the Aztec Diamond [Henry Cohn, Noam Elkies, Jim Propp, 1996]

circle

Rhombi in a truncated hexagon [Richard Kenyon and Andrei Okounkov, arXiv:math-ph/0507007]

cardioid

DQC

 \Rightarrow connection with algebraic geometry

4 – Dimension 3: 4 \rightarrow 3 tilings in a rhombic dodecahedron: Numerical exploration

4 rhombohedral prototiles:

- boundary: rhombic dedecahedron of side L
- Direct observation [Linde, Moore, Nordhal, 2001]
- Arctic surface: octahedron

8 pyramidal frozen regions removed

ヘロト 人間 ト 人臣 ト 人臣 ト

Sac

Confirmation: Entropy calculations [Widom, Mosseri, ND, Bailly, 2002]

 $\left. \begin{array}{l} S_{``free''}\simeq 0.214\\ S_{fixed}\simeq 0.145 \end{array} \right\} ratio \ \simeq 1.48\pm 0.03 \end{array} \right. \label{eq:state}$

Variational principle: 3/2 if and only if (assuming uniqueness of ϕ_{max}):

- tiling frozen outside the octahedron
- tiling homogeneous inside the octahedron

corrugated octahedron: $S = S_{free}$

Sar

Consequence: in 3D, the relationship between fixed- and free-boundary tilings is heighly simplified

Fixed-boundary properties can be much more easily transposed to free-boundary tilings of physical interest

Conjecture: *in dimension 3 and above, arctic frontiers are polyhedra.*

Open problem: octagonal symmetry and beyond

- frozen outer crown
- $3 \rightarrow 2$ crown: effective D = D' = 3
- $4 \rightarrow 2$ central region

[figure from Matthew Blum]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sac

PROBLEM: $\sigma(\nabla \phi)$ unknown...